— J. Korean Soc Ther Radiol Oncol: Vol. 16, No. 4, December, 1998 —

Expression of Cell Cycle Related Genes in HL60 Cells Undergoing Apoptosis by X-irradiation

Jin Hee Kim, M.D.* and In Kyu Park, M.D. †

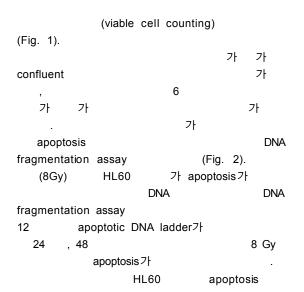
<u>Purpose</u>: To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy.

<u>Material and Methods</u>: HL-60 cell line (promyelocytic leukemia cell line) was grown in culture media and irradiated with 8 Gy by linear accelerator (6 MV Xray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16^{INK4a}, p21^{WAF1}, p27^{KIP1}, E2F, PCNA and Rb).

Results: X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of phosphorylated retinoblastoma proteins (ppRb). Cyclin D1, PCNA, CDC2, CDK4 and p16^{INK4a} protein underwent no significant change at any times after irradiation. There was not detected p21^{WAF1} and p27^{KIP1} protein. Cyclin A, B, C mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin D1 mRNA increased immediately and then decreased at 48 h after radiation. After radiation, cyclin E mRNA decreased with the lapse of time. CDK2 mRNA decreased at 3 h and increased at 6h after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of p16^{INK4a} and not detected in expressin of p21^{WAF1} and p27^{KIP1} mRNA.

<u>Conclusion</u>: We suggest that entry into S phase may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced apoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced apoptosis of HL60 cells and this may be associated with induction of E2F and cyclinE/CDK2. These results support that p21^{WAF1} and p27^{KIP1} are not related with radiation induced- apoptosis.

Key Words: Radiation, Apoptosis, Cell cycle related gene, HL60


^{*}Department of Radiation Oncology, Keimyung University School of Medicine, Dongsan Medical Center,
† Department of Radiation Oncology, Kyungpook National University, School of Medicine, Taegu, Korea

```
8, 9)
                                                                    apoptosis
                                                                   , hyperthermia, glucocorticoid
                                                                                                      10, 11)
                                               가
                                                                   , serum withdrawal
                           DNA
                                                             apoptosis
                                                                                                  apoptosis
                            necrosis
                                       programmed
                                                                               apoptosis
cell death(apoptosis)
apoptosis
                                                             DNA double strand break
                                                                                            TNF-alpha
                              calcium
                                         dependent
                                                                       apoptosis
nuclease
                     180-200bp
                                   DNA fragment
                                                          sphingomyelin
DNA가
                          DNA ladder
                                                          Sphingomyelin
                                                                                                   ceramide
                                                                      stress-activated PK/c-Jun N-terminal
                                                                    (SAPK/JNK)
                                                  G_0
                                                                                     cascade
                                                                              .12, 13)
                                                          apoptosis
                                                                                          HL60
       G<sub>1</sub>, S, G<sub>2</sub>
                                                          (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2,
                                                          CDK2, CDK4, p16<sup>INK4a</sup>, p21<sup>WAF1</sup>, p27<sup>KIP1</sup>, E2F,
                                                          PCNA
                                                                   Rb)
                                                                                        RNA
                                                가
                                                                                       apoptosis
                                          가
                                                  가
                                 cyclin (cyclin A,
cyclin B, cyclin C, cyclin D, cyclin E ), cyclin
                                                            1.
               cyclin dependent kinases(CDKs),
                                                            promyelocytic leukemia
                                                                                               HL60
cyclin dependent kinase
                                     CDKs
                                                               ATCC(American Type Culture Collection)
         cyclin dependent kinase inhibitors (CKIs),
                                                                        2×105cell/ml
                                                                                          10 \times 10^5 \text{cell/ml}
    retinoblastoma
                           (Rb)
                                                             10% FBS
                                                                                   RPMI1640
                            DNA
                  E2F,
                                                          36 , 5\% CO_2
PCNA(proliferating cell nuclear antigen), E2F
                                                             3.5 \times 10^5 \text{cell/ml}
                                                                                           100mm
         가
                 Rb
                         , G1/S
                                                                                          가
                                                                                                (Mitsubishi,
               p53
                                                          ML-15-MDX, 6MV X- )
  .7)
                                                                                        build-up
                                                                  acrvl
                                                                               X-
                                         DNA
                                                                          8Gy
     apoptosis
```

```
2. Trypan Blue Exclusion Assay
                                                          0.1ml
                                                                  chloroform
                                                                                     15
                                                                                    12,000rpm, 4
                                   6, 12, 24, 48
                                                                                tube
                                                     15
              0.4% trypan blue 50µl
                                                                       -70
                                                                                2
                                                     2-propanol
50µ l
                    hemocytometer
                                                     12,000rpm
                                                                          15
                                                                                        RNA
                                                             75% cold
                                                                                            Speedvac
  3. Apoptotic DNA Fragmentation Assay
                                                     concentrator(Savant Co, U.S.A.)
                                                                   diethyl pyrocarbonate(DEPC)
  0.5 \times 10^{6}
                       eppendorf-tube
                                                            100µ I
2000rpm
                                                                                         14)
lysis buffer(20mM EDTA, 100mM Tris, pH 8.0,
                                                                       -70
0.8%(W/V) sodium lauryl sarcosine)
                                           2μ1
                                                       2) cDNA
RNase A(5mg/ml)
                                           1
                                                              RNA 4µg oligo dT(16mer)
                                                                                                   40
incubation
               20 u l
                      proteinase K
                                          50
                                                                      (reverse transcription)
   12
                           6 x Gel Loading Buffer
                                                                             RNA 4 µg, 5mM MgCl<sub>2</sub>,
(GLB) 5µI
                         1.2% agarose gel
                                             dry
                                                     50mM KCI, 10mM Tris-HCI(pH8.3), 1mM dATP, 1 mM
gel electrophoresis(
                                                     dTTP, 1mM dCTP, 1mM dGTP, 1U/µI RNase
                                                     inhibitor(Perkin-Elmer Co.), 2.5U/µI MuLV reverse
  4. SDS-PAGE
                 Western Blot Analysis
                                                     transcriptase(Perkin-Elmer Co.), 2.5µ Moligo d(T)16
                                   6, 12, 24, 48
                                                                    42 1 , 99 5 , 5 5
                     Lysis Buffer(10mM Tris-CI
(pH7.4), 5mM EDTA(pH 8.0), 130mM NaCl, 1%
                                                       3) mRNA
                                                                                      PCR
TritonX-100), 0.2M phenyl-methyl-sulfonyl fluoride,
proteinase inhibitor cocktail
                                                       PCR 10 x reaction buffer(15mM MgCl<sub>2</sub>, 100mM
                                 BioRad protein
                                                     Tris-HCl pH 8.3, 500mM KCl) 5µl
                                                                                        10mM dATP,
assay kit
                                           SDS-
                                                     dTTP, dCTP, dGTP
                                                                            1μ1
                                                                                         30µM sense
PAGE
                     nitrocellulose paper(Millipore
                                                        antisense primer(Table 1)
                                                                                           1µI
 , Immobilon)
                   electrotransfer
                                                     mixture
                                                                1µ1
transfer
           membrane
                        Blotto
                                 (5% skim dry
                                                     2.5unit
                                                             Taq polymerase(Perkin Elmer Co.)
milk in TBS-T buffer)
                             cold chamber
                                                                                          30µI
           (shaking)
                          . Blotto
                                                                                DNA thermal cycler
                                                     (mineral oil)
                               TBS-T buffer
                 ) 2
                                                     (Perkin Elmer Co.)
                                                                                   PCR
                           )
                      (
                                                     DNA denaturation 95
                                                                             1 , annealing 60
          TBS-T buffer
                                       Enhanced
                                                                                       GAPDH
                                                       , extension
                                                                    72
                                                                          2
Chemiluminescence(ECL, Amersham )
                                                                    25 cycle,
    . cyclin A, B, D1, E E2F, PCNA, cdc2, cdk4,
                                                              30 cycle
                                                                                            PCR
p16, P27
                                   Santacruz
                                                     10µl 1% agarose gel
                                                                                             ethidium
      , Rb
                                   pharmingen
                                                     bromide
                                                                        UV transilluminator
  5. RT-PCR (Reverse Transcripion-Polymerase
     Chain Reaction)
  1) RNA
                                    3, 6, 12, 24,
                                                          3.5x105cell/ml
                                                                                        X-
48
                                                                                                   6
RNAzol B(Biotecx laboratories, Inc.)
                                                     12, 24, 48
                                                                      trypan blue dye exclusion
```

Table 1. PCR Primers Used in This Study

Genes		Sequences	Product size(bp)
cyclin A	Sense Antisense	5' CAGAA TGAGA CCCTG CATTT GGCTG 3' 5' CAGAT TTAGT GTCTC TGGTG GGTTG 3'	615
cyclin B	Sense Antisense	5' CCATT ATTGA TCGGT TCATG CAGA 3' 5' CTAGT GGAGA ATTCA GCTGT GGTA 3'	585
cyclin C	Sense Antisense	5' CCTGT ATTAA TGGCT CCTAC ATGTG TG 3' 5' GGTTG CCATC TCTTT TCTCT CATCG A 3'	510
cyclin D1	Sense Antisense	5' ACCTG GATGC TGGAG GTCTG 3' 5' GAACT TCACA TCTGT GGCAC A 3'	402
cyclin E	Sense Antisense	5' GGAAG GCAAA CGTGA CCGTT 3' 5' GGGAC TTAAA CGCCA CTTAA 3'	638
CDK2	Sense Antisense	5' CATGGAGAACTTCCAAAAG 3' 5' CTATCAGAGTCGAAGATGGG 3'	901
CDK4	Sense Antisense	5' ATGGCTGCCACTCGATATGA 3' 5' CTCTGGGTTGCCTTCGTCCTT 3'	912
p16	Sense Antisense	5' ATGGAGCCTTCGGCTGACT 3' 5' GAGCCTCTCTGGTTCTTTCA 3'	464
p21	Sense Antisense	5' CGGGATCCGGCGCCATGTCAGAACCGGC 3' 5' CGGGAATTCGTGGGCGGATTAGGG 3'	509
p27	Sense Antisense	5' GCGGGATCCATGTCAAACGTGCGAGTGTC 3' 5' GTGAAGCTTTTACGTTTGACGTCTTCTGA 3'	615
GAPDH	Sense Antisense	5' CGTCT TCACC ACCAT GGAGA 3' 5' CGGCC ATCAC GCCAC AGTTT 3'.	300

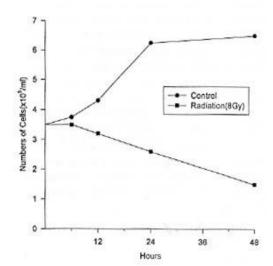


Fig. 1. Viable cell counting of HL60 cells. Cells were seeded at concentration of 3.5x10⁵ cells/ml on time 0. Viability was determined by trypan blue dye exclusion test.

western blot (Fig. 3-10). Cyclin A 48 가

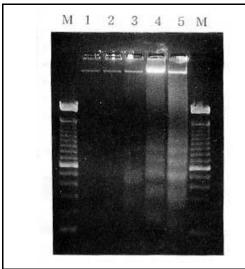


Fig. 2. Photograph of electrophoresed gel showing apoptosis-like DNA "ladders" in HL60 cells after X irradiation(8Gy). Lanes 1-5: 0, 6, 12, 24, 48 hours after irradiation, M: 100bp DNA ladder size marker.

가 , cyclin E 6 12 . E2F 가 6 가 48 CDK2 가 가 48 cyclin D1, PCNA, CDC2, CDK4, p16^{INK4a} p21^{WAF1} Rh Rb 가 12-24 가 가 48 ppRb(phosphorylated Rb protein) RNA RT-PCR (Fig. 11, 12). cyclin A, B, C mRNA 가 가 cyclin D1 mRNA 가 48 . cyclin E mRNA . CDK2 mRNA 3 CDK4 mRNA 가 6-12 . p16^{INK4a} mRNA 가

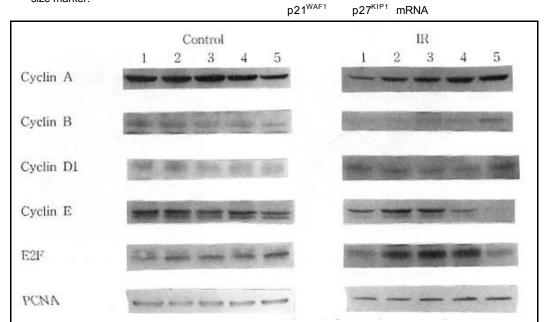


Fig. 3. Western blot analysis of relative changes in cyclin A, cyclin B, cyclin D1, cyclin E, E2F and PCNA expression levels after irradiation. Lysates from control and irradiated cells were subjected to immunoblotting with anti-cyclin A, anti-cyclin B, anti-cyclin D1, anti-cyclin E, anti-E2F, or anti-PCNA antibodies. Lanes 1-5: 0, 6, 12, 24 and 48 hours after irradiation.

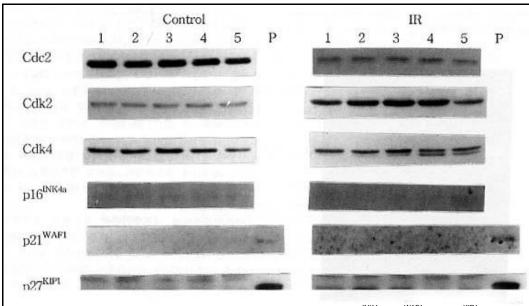


Fig. 4. Western blot analysis of relative changes in CDC2, CDK2, CDK4, p16^{tNK4a}, p21^{WAF1} and p27^{KIF1} expression levels after irradiation. Lysates from control and irradiated cells were subjected to immunoblotting with anti-CDC2, anti-CDK2, anti-CDK4, anti-p16^{tNK4a}, anti-p21^{WAF1}, or anti-p27KIP1 antibodies. Lanes 1-5: 0, 6, 12, 24 and 48 hours after irradiation, P: positive control.

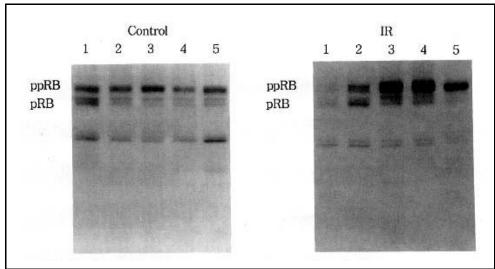
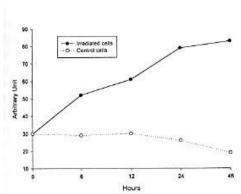



Fig. 5. Western blot analysis of RB protein in control and irradiated HL60 cells. Lysates from control and irradiated cells were subjected to immunoblotting with anti-RB antibody. Lanes 1-5: 0, 6, 12, 24 and 48 hours after irradiation.

Fig. 6. Expression levels of cyclin A protein in control and irradiated HL60 cells.

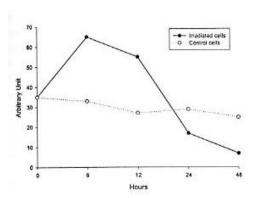


Fig. 7. Expression levels of cyclin E protein in control and irradiated HL60 cells.

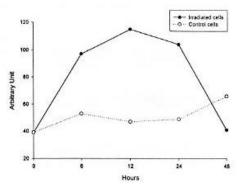


Fig. 8. Expression levels of E2F protein in control and irradiated HL60 cells.

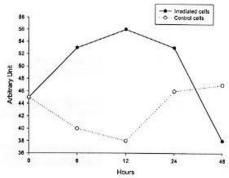


Fig. 9. Expression levels of CDK2 protein in control and irradiated HL60 cells.

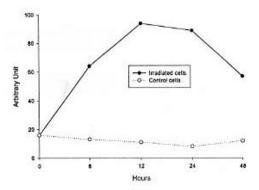


Fig. 10. Expression levels of Rb protein in control and irradiated HL60 cells.

apoptosis
HL60

8Gy

DNA fragmentation assay
DNA ladder

DNA ladder apoptosis

calcium dependent nuclease7\(\) genomic
DNA7\(\) 8Gy
7\(\) HL60 apoptosis

apoptosis

HL60

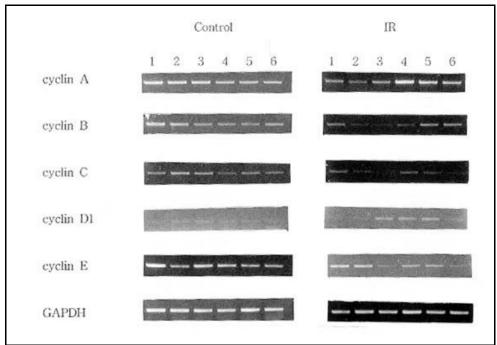


Fig. 11. RI-PCR analysis of relative changes in cyclin A, B, C, D1, E, and GAPDH mRNA expression levels after irradiation. Total RNAs from control and irradiated cells were subjected to reverse transcription. Lanes 1-6: 0, 3, 6, 12, 24 and 48 hours after irradiation.

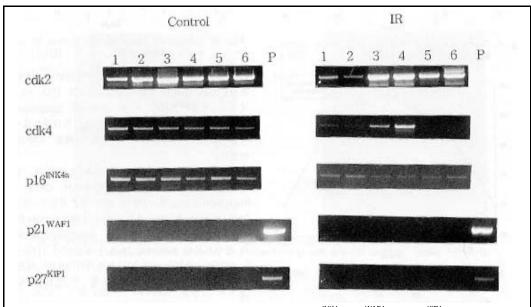


Fig. 12. RI-PCR analysis of relative changes in CDK2, CDK4, p16^{tNK4s}, p21^{WAF1} and p27^{KIF1} mRNA expression levels after irradiation. Total RNAs from control and irradiated cells were subjected to reverse transcription. Lanes 1-6: 0, 3, 6, 12, 24 and 48 hours after irradiation, P: positive control.

```
caspase
  (cyclin A, cyclin B, cyclin D1, cyclin E, cdc2,
CDK4, p16<sup>INK4a</sup>, p21<sup>WAF1</sup>, p27<sup>KIP1</sup>, E2F, PCNA
                                                                      p27KIP1
                                                                                    HL60
                                                                                                        32-34)
                                                                             가
western blot analysis
                 E2F
                                                          (TPA)
     cyclin A, E pRb CDK2
                                            . E2F
                                                                                                  HL60
                      가 G1
                                    S
                                                             apoptosis
                                      가
                                             cyclin
                                                                                           CDK4, p16 INK4a,
                                                                           가
A, cyclin E, cdc2, c-myc, DNA polymerase-alpha,
                                                        cyclin B, D1,
                                                                              PCNA
thymidine kinase
                                 가
                                                              apoptosis
                                                                                             가
                                apoptosis
                              16)
                                                           RNA
            S
                            DNA
                                                                  RT-PCR
                                                                                                   cyclin A
     E2F
                        apoptosis
                                                                                                가
                                                        mRNA 가
  .<sup>17-20)</sup> E2F-1<sup>-/-</sup> mice
                                apoptosis
                                                        cyclin E
                                                            , CDK2 mRNA
                                                                                                 가 6
  21)
                                                                   가
                                                                                     western blotting
                                6
                                          24
                                                                                      CDK2
                                                                                                       가
                                                                   cyclin A
      E2F
                       가
                                                        cyclin E
                                                                                mRNA
                                                                                                가
apoptosis
                                          . cyclin E
   CDK2
                  cyclin A
                                 G1/S transition
                                                        cyclin B mRNA
                  CDK
                                               12
         cyclin
                                                                           가
                                                                                 , cyclin D1 mRNA
         cyclin E
                            가, 24
                                             CDK2
                                                                    가
                                                                           48
                                                                                                    , CDK4
         가
                   48
                                 cyclin A
                                                                                                    가
                                                        mRNA
                                                                          6-12
가
          HL60
                        apoptosis
                                              G1/S
                                                             post-transcriptional regulation
transition
                                                                           actinomycin D
                                                                                             cycloheximide
  Rb
              retinoblastoma
                                     pRB가 E2F
                                                                              . p21 WAF1
                                                                                           p27<sup>KIP1</sup> mRNA
                                                                               p21<sup>WAF1</sup>
                                                                                            p27<sup>KIP1</sup>
<sup>22-24)</sup> CDKs(cyclin dependent kinases)
                                             cyclin
                                                                transcription
D/CDK4, cyclin E/CDK2
     E2F
                                                                               HL60
   8, 25-28)
                                          Rb
                                                                                 apoptosis
western blot
   Rb
               가가
                                          E2F
                                                                     apoptosis
                                  Rb
                                                                                     HL60
                              Rb
                                          가
                                                                  apoptosis
                                                                               E2F
                                                                                                 cyclin E
   Rb
                                                        CDK2
                                                                      cyclin A
                                                                                                가
apoptosis
                                                                     G1/S
                                                                                   apoptosis가
E2F
                             cyclin E/CDK2
                                                                                    Rb
                                                                                                가
  가
                                                        Rb
                                                                               apoptosis
apoptosis
                                 caspase
                                                                               E2F
                                       29-31)
   Rb
                                                                                 가
                                                        cyclin E/CDK2
```

. HL60 TPA $p21^{WAF1} \quad p27^{KIP1}$

apoptosis

RNA apoptosis

HL60 cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16 $^{\text{INK4a}}$, p21 $^{\text{WAF1}}$, p27 $^{\text{KIP1}}$, E2F, PCNA Rb RT-PCR western blot

analysis

HL60 apoptosis F2F 가, cyclin E CDK2, cyclin A 가 G1/S transition apoptosis 가 Rb 가 Rb apoptosis E2F cyclin E/CDK2

가 . HL60 TPA $p21^{WAF1} p27^{KIP1}$. apoptosis

- Yarnold J. Molecular aspect of cellular responses to radiotherapy. Radiother Oncol 1997; 44:1-7
- Carr AM, Hoekstra MF. The cellular responses to DNA damage. Trends Cell Biol 1995; 5:32-40
- Martin SJ, Green DR. Apoptosis and cancer: the failure of controls on cell death and cell survival. Crit Rev Oncol 1995; 18:137-153
- Steller H. Mechanism and genes of cellular suicide. Science 1995; 267:1445-1449
- White E. Death-defying acts: a meeting review on apoptosis. Genes Dev 1993; 7:2277-2284
- 6. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284:555-556
- 7. Sherr CJ. Cancer cell cycles. Science 1996; 274:

1672-1677

- Sherr CJ and Roberts J. Inhibitors of mammalian G1 cyclin dependent kinases. Genes Dev 1995; 9: 1149-1163
- Wang JY. Retinoblastoma protein in growth suppression and death protection. Curr Opin Genet Dev 1997; 7:39-45
- Hickman J. Apoptosis induced by anticancer drugs. Cancer metastasis Rev 1992: 11:121-139
- **11. Sellins KS.** Hyperthermia induces apoptosis in thymocytes. Radiat Res 1991; 126:88-95
- **12.** Haimovitz-Friedman A, Kan CC, Ehleiter D, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180:525-535
- Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and reparability. Prog Nucleic Acid Mol Biol 1988; 35:95-125
- 14. Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidine thiocyanatephenol-chloroform extraction. Anal Biochem 1987; 162:158-159
- 15. DeGregori J, Kowalik T, Nevins J. Cellular targets for activation by the E2F-1 transcription factor include DNA synthesis and G1-S-regulatory genes. Mol Cell Biol 1995; 15:4215-4224
- 16. Manome Y, Datta R, Taneja N, et al. Coinduction of c-jun gene expression and internucleosomal DNA fragmentation by ionizing radiation. Biochemistry 1993; 32:10607-10613
- 17. Kowalik TF, Degregori J, Schwartz JK, et al. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69:2491-2500
- 18. Qin X-Q, Livingston DM, Kaelin WG Jr, et al. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91:10918- 10922
- 19. Shan B, Lee W-H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 1994; 14:8166-8173
- 20. Wu X, Levine A. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 1994; 91:3602-3606
- 21. Field SJ, Tsai F-Y, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress

- proliferation. Cell 1996; 85:549-561
- **22. Hamel PA, Phillips RA, Muncaster M, et al.** Speculations on the roles of RB1 in tissue specific differentiation, tumor initiation, and tumor progression. FASEB J 1993; 7:846-854
- **23. Nevins JR.** E2F: A link between the tumor suppressor protein and viral oncoproteins. Science 1992; 258:424-429
- 24. Wang JY, Knudsen ES, Weich PJ. The retinoblastoma tumor suppressor protein. Adv Cancer Res 1994; 64:25-84
- 25. Lees JA, Buchkovich KJ, Marshak DR, et al. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J 1991; 10: 4279-4290
- 26. Peter M, Herskowitz L. Joining the complex cyclin dependent-kinase inhibitory proteins and the cell cycle. Cell 1994; 79:181-184
- 27. Peters G. Stifled by inhibitions. Nature 1994; 371: 204-205
- **28. Sherr CJ.** Mammalian G1 cyclins. Cell 1993; 73: 1059-1065
- 29. An B, Dou QP. Cleavage of retinoblastoma protein during apoptosis: An interleukin 1 beta-converting enzyme like protease as candidate. Cancer Res 1996; 56:438-442
- 30. Chen W-D, Otterson GA, Lipkowitz S, et al.

- Apoptosis is associated with cleavage of 5kDa fragment from RB which mimics dephosphorylation and modulates E2F binding. Oncogene 1997; 14: 1243-1248
- Janicke RU, Walker PA, Lin XY, et al. Specific cleavage of the retinoblastoma protein by an ICE-like proteinase in apoptosis. EMBO 1996; 15: 6969-6978
- 32. Jiang H, Lin J, Su Z, et al. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 1994; 9:3397-3406
- 33. Steinman RA, Hoffman B, Iro A, et al. Induction of p21(WAF-1/CIP1) during differentiation. Oncogene 1994; 9:3389-3396
- **34. Wang QM, Jones JB, Studzinski GP.** Cyclindependent kinases inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res 1996; 56: 264-267

: =

HL60 **Apoptosis** apoptosis RNA apoptosis : promyelocytic leukemia HL60 (6MV X-8Gy Apoptotic DNA) Fragmentation Assay apoptosis (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16 INK4a, p21 WAF1, p27^{KIP1}, E2F, PCNA Rb) RNA western blot analysis RT-PCR HL60 : 8 Gy apoptosis가 가 , cyclin E, E2F, CDK2 cyclin A 48 Rb 가 가 Rb 가 ppRb . cyclin D1, PCNA, CDC2, CDK4, (phosphorylated Rb protein) p21^{WAF1} p27^{KIP1} p16^{INK4a} 가 12 cyclin A, B, C mRNA 가 cyclin D1 mRNA 가 48 . cyclin E mRNA . CDK2 mRNA 가 6 가 . p16^{INK4a} RNA CDK4 mRNA 6-12 가 , p21^{WAF1} p27^{KIP1} RNA 가 HL60 G1/S apoptosis transition 가 Rb 가 Rb E2F cyclin E/CDK2 p27^{KIP1} p21WAF1 가 apoptosis