Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Characterization of Structural Variations in the Context of 3D Chromatin Structure

Molecules and Cells 2019³â 42±Ç 7È£ p.512 ~ 522
±è±Ô±¤, ¾öÁ¤Çö, Á¤Àΰæ,
¼Ò¼Ó »ó¼¼Á¤º¸
±è±Ô±¤ ( Kim Kyu-Kwang ) 
Korea Advanced Institute of Science and Technology Department of Biological Sciences

¾öÁ¤Çö ( Eom Jung-Hyun ) 
Korea Advanced Institute of Science and Technology Department of Biological Sciences
Á¤Àΰæ ( Jung In-Kyung ) 
Korea Advanced Institute of Science and Technology Department of Biological Sciences

Abstract


Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of threedimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.

Å°¿öµå

3D chromatin structure; gene regulation; Hi-C; structural variation; topologically associating domain

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

SCI(E)
MEDLINE
KCI