Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

°ïÃæÀ¯·¡ Ç×±Õ ÆéƼµåÀÇ ÀǾàÇÐÀû Àû¿ë Pharmaco-medical Application of Antimicrobial Peptides Derived from Insect

Journal of Life Science 2016³â 26±Ç 6È£ p.737 ~ 748
ÀÌÁØÇÏ, ±èÀοì, ±è¹Ì¾Ö, À±Àº¿µ, ȲÀοµ,
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÌÁØÇÏ ( Lee Joon-Ha ) 
³óÃÌÁøÈïû ±¹¸³³ó¾÷°úÇпø ³ó¾÷»ý¹°ºÎ

±èÀοì ( Kim In-Woo ) 
³óÃÌÁøÈïû ±¹¸³³ó¾÷°úÇпø ³ó¾÷»ý¹°ºÎ
±è¹Ì¾Ö ( Kim Mi-Ae ) 
³óÃÌÁøÈïû ±¹¸³³ó¾÷°úÇпø ³ó¾÷»ý¹°ºÎ
À±Àº¿µ ( Yun Eun-Young ) 
³óÃÌÁøÈïû ±¹¸³³ó¾÷°úÇпø ³ó¾÷»ý¹°ºÎ
ȲÀοµ ( Hwang In-Yeong ) 
³óÃÌÁøÈïû ±¹¸³³ó¾÷°úÇпø ³ó¾÷»ý¹°ºÎ

Abstract

ÇöÀç±îÁö °ïÃæ Ç×±Õ ÆéƼµå´Â 1980³â¿¡ ¼¼Å©·ÎÇǾƳª¹æ(Hyalophora cecropia) ¹øµ¥±âÀÇ Ç÷¸²ÇÁ·ÎºÎÅÍ ¼¼Å©·ÎÇÉ(cecropin)ÀÌ Ã³À½À¸·Î Á¤Á¦µÈ ÀÌÈÄ·Î 150°³ ÀÌ»óÀÇ ÆéƼµå°¡ ºÐ¸®µÇ¾î Ư¼ºµéÀÌ º¸°íµÇ¾î ¿Ô´Ù. ±×·¯¹Ç·Î °ïÃæÀº Ç×±Õ ÆéƼµå ¼±¹ßÀ» À§ÇÑ ÁÁÀº Àç·á·Î¼­ °í·ÁµÇ¾î ¿Ô´Ù. °ïÃæ Ç×±Õ ÆéƼµå´Â ºÐÀÚ·®ÀÌ ÀÛÀ¸¸ç ¾çÀüÇϸ¦ ¶ì°í ´Ù¾çÇÑ ±æÀÌ¿Í ¼­¿­ ¹× ±¸Á¶¸¦ °®´Â ¾çÄ£¸Å¼ºÀÇ Æ¯Â¡À» °®´Â´Ù. °ïÃæ Ç×±Õ ÆéƼµå´Â ¹ÚÅ׸®¾Æ, Áø±Õ, ±â»ýÃæ, ±×¸®°í ¹ÙÀÌ·¯½º¿Í °°Àº º´¿øüµéÀÇ Ä§ÀÔ¿¡ ´ëÇ×ÇÏ¿© °ïÃæÀÇ ¼±Ãµ¼º ¸é¿ªÃ¼°è¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÑ´Ù. ´ëºÎºÐÀÇ °ïÃæ Ç×±Õ ÆéƼµåµéÀº »óó°¡ ³ª°Å³ª ¸é¿ªÈ­ ½Ã Áö¹æü¿Í ´Ù¸¥ ƯÁ¤ Á¶Á÷µé¿¡¼­ À¯µµ ÇÕ¼ºµÈ´Ù. À̾ ±× Ç×±Õ ÆéƼµåµéÀº ¹Ì»ý¹°µé¿¡ ´ëÇ×ÇÏ¿© ÀÛ¿ëÇϱâ À§ÇØ Ç÷¸²ÇÁ·Î ºÐºñµÇ¾î ³ª¿Â´Ù. À̵é ÆéƼµåµéÀº Ç×¾ÏÈ°¼ºÀ» Æ÷ÇÔÇÏ¿© ´Ù¾çÇÑ ¹Ì»ý¹°µé¿¡ ´ëÇØ ±¤¹üÀ§ÇÑ Ç×±ÕÈ°¼ºÀ» ³ªÅ¸³½´Ù. °ïÃæ Ç×±Õ ÆéƼµå´Â ±¸Á¶ ¹× ¼­¿­»óÀÇ Æ¯Â¡µé¿¡ ±âÃÊÇÏ¿© Å©°Ô 4°³ÀÇ Æйи®·Î ³ª´©¾îÁú ¼ö ÀÖ´Ù. ´Ù½Ã ¸»Çؼ­ ¥á-³ª¼±Çü ÆéƼµå, ½Ã½ºÅ×ÀÎ-dzºÎ ÆéƼµå, ÇÁ·Ñ¸°-dzºÎ ÆéƼµå, ±×¸®°í ±Û¸®½Å-dzºÎ ÆéƼµå/´Ü¹éÁúÀÌ ±×°ÍÀÌ´Ù. ¿¹¸¦ µé¸é, ¼¼Å©·ÎÇÉ, °ïÃæ µðÆæ½Å(defensin), ÇÁ·Ñ¸°-dzºÎ ÆéƼµå, ±×¸®°í ¾ÆŸ½Å(attacin)ÀÌ ÀϹÝÀûÀÎ °ïÃæ Ç×±Õ ÆéƼµåµéÀε¥, ±Û·Îº£¸°(gloverin)°ú ¸ð¸®½Å(moricin)Àº ³ªºñ¸ñ Á¾µé¿¡¼­¸¸ È®ÀÎµÇ¾î ¿Ô´Ù. º» ÃѼ³¿¡¼­´Â °ïÃæÀÇ Ç×±Õ ÆéƼµåµé¿¡ ÃÊÁ¡À» ¸ÂÃß¾î °ïÃæ Ç×±Õ ÆéƼµåµéÀÇ Àû¿ë °¡´É¼º ¹× ¹æÇâ°ú ÇÔ²² ÇöÀçÀÇ Áö½Äµé°ú ÃÖ±ÙÀÇ ÁøÀüµÈ »çÇ׵鿡 ´ëÇÏ¿© ³íÀÇÇÏ°íÀÚ ÇÑ´Ù.

By this time, insect antimicrobial peptides (AMPs) have been characterized more than 150 peptides since purification of cecropin in the hemolymph of pupae from Hyalophora cecropia in 1980. Therefore, it is considered that insects are good sources of AMP selection. Insect AMPs are small (low molecular weight) and cationic, and amphipathic with variable length, sequence, and structure. They perform a pivotal role on humoral immunity in the insect innate immune system against invading pathogens such as bacteria, fungi, parasites, and viruses. Most of the insect AMPs are induced rapidly in the fat bodies and other specific tissues of insects after septic injury or immune challenge. Then the AMPs subsequently released into the hemolymph to act against microorganisms. These peptides have a broad antimicrobial spectrum against various microbes including anticancer activities. Insect AMPs could be divided into four families based on their structures and sequences. That is the ¥á-helical peptides, cysteine-rich peptides, proline-rich peptides, and glycine-rich peptides/proteins. For instance, cecropins, insect defensins, proline-rich peptides, and attacins are common insect AMPs, but gloverins and moricins have been identified only in lepidopteran species. This review focuses on AMPs from insects and discusses current knowledge and recent progress with potential applications of insect AMPs.

Å°¿öµå

Antimicrobial activity; antimicrobial peptides; innate immunity; insect; pathogen

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

µîÀçÀú³Î Á¤º¸

KCI