Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

±ÙÀ§ ½Å¼¼´¢°ü¼¼Æ÷°¡ ¼ö»êÀÇ À̵¿¿¡ °ü¿©ÇÏ´Â ±âÀü Mechanism of Oxalate Transportation through Proximal Renal Tubular Epithelial Cells

´ëÇѺñ´¢±â°úÇÐȸÁö 1998³â 39±Ç 6È£ p.546 ~ 552
¼Ò¼Ó »ó¼¼Á¤º¸
±èÇöȸ/Hyeon Hoe Kim

Abstract

¼­·Ð
¼ö»êÀº ¿ä·Î °á¼®ÀÇ Áß¿äÇÑ ¼ººÐÀÇ Çϳª·Î¼­ 1986³â BaggioµîÀÌ ¿ä·Î °á¼® ȯÀÚ¿¡¼­ Àû
Ç÷±¸¸¦ ÅëÇÑ ¼ö»êÀÇ À̵¿ÀÌ Áõ°¡µÇ¾î ÀÖÀ½À» º¸°íÇÑ ÀÌ·¡ ¼ö»êÀ̵¿ÀÇ Àå¾Ö°¡ ¿ä·Î °á¼®°ú
°ü°è°¡ ÀÖÀ¸¸®¶ó´Â »ç½ÇÀÌ ÀÓ»óÀû ¹× ½ÇÇèÀûÀ¸·Î ±× Áõ°Å°¡ º¸°íµÈ ¹Ù ÀÖ´Ù. ±×·¯³ª ÀÌ¿Í
°°Àº º¸°íµéÀº ½Å¼¼´¢°üÀÇ ÀÏÁ¤ÇÑ Á¤È®ÇÑ ºÎÀ§¸¦ ÅëÇÑ ¼ö»êÀÇ À̵¿À» ÃøÁ¤ÇÑ °üÂû°á°úµéÀÌ
¾Æ´Ï¾úÀ¸¸ç ¾ÆÁ÷µµ ½Å¼¼´¢°üÀÇ °¢°¢ÀÇ ´Ù¸¥ ºÎÀ§¿¡¼­ÀÇ ¼ö»êÀÇ ÀçÈí¼ö ¶Ç´Â ¹è¼³¿¡ °üÇÏ¿©
¼­´Â Á¤È®ÇÏ°Ô ¾Ë·ÁÁø ¹Ù°¡ ¾ø´Ù. ½Å¼¼´¢°ü¿¡¼­ÀÇ ¼ö»êÀÇ À̵¿¿¡ °üÇÑ Á¤º¸°¡ ¹ÌÈíÇÑ ÀÌÀ¯
·Î´Â À̸¦ ¿¬±¸ÇÒ ¸¸ÇÑ ½ÇÇèÀûÀÎ ¸ðµ¨À» ¼³Á¤Çϴµ¥ ±â¼úÀûÀÎ ¾î·Á¿òÀÌ ¸¹´Ù´Â °ÍÀÌ ÇÑ ¿ä
ÀÎÀ¸·Î ÀÛ¿ëÇÑ´Ù. Áï ³×ÇÁ·ÐÀÇ ´Ù¾çÇÑ ±¸Á¶¹°µé Áß¿¡¼­ °¢°¢ÀÇ Á¤È®ÇÑ À§Ä¡¸¦ ¹Ýº¹ÀûÀ¸·Î
ÀÏÁ¤ÇÏ°Ô Á¢±ÙÇÏ´Â °ÍÀÌ ±â¼úÀûÀ¸·Î ¿ëÀÌÇÑ °ÍÀÌ ¾Æ´Ï¸ç ÀÌµé °¢°¢ÀÇ ºÎÀ§¿¡¼­ ÀÌ¿ÂÀÇ È¯°æ
À» ¼³Á¤ÇÏ´Â °ÍÀÌ ¿©ÀÇÄ¡ ¾Ê´Ù´Â Á¡µîÀÌ ±×µéÀÌ´Ù. ÀÌ¿Í °°Àº ³­Á¦¸¦ ±Øº¹Çϱâ À§ÇÏ¿© ¿©·¯
ÇÐÀÚµéÀÌ ±â¿Õ¿¡ ¼ö¸³µÈ ½Å¼¼´¢°ü ¼¼Æ÷ÁÖ¸¦ ÀÌ¿ëÇÏ¿© ÀÌ¿Í °°Àº ³­Á¦¸¦ ±Øº¹ÇÏ°íÀÚ ÇÏ´Â ½Ã
µµ¸¦ ¼öÇàÇÑ ¹Ù ÀÖ´Ù. ±×¸®ÇÏ¿© KoulµîÀº µÅÁöÀÇ ±ÙÀ§ ½Å¼¼´¢°ü¼¼Æ÷·ÎºÎÅÍ À¯·¡ÇÑ
LLC-PK1¼¼Æ÷°¡ ÀÏÁ¤ÇÑ ¹æÇ⼺À» °®´Â ¼¼Æ÷¸·ÃþÀ» Çü¼º ÇÒ ¼ö ÀÖÀ½À» ¹àÈù ¹Ù ÀÖ´Ù. ±×·¯
³ª ÀÌ¿Í °°Àº ¿¬±¸´Â Åë»óÀûÀÎ ¹è¾ç±â¼úÀ» »ç¿ëÇÑ °ü°è·Î ½ÇÁ¦ »ýü¿¡¼­¿Í °°Àº ¾ç¹æÇ⼺ÀÎ
¸ðµ¨À» ¼³Á¤ÇÑ °ÍÀº ¾Æ´Ï¾ú´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â LLC-PKI1¼¼Æ÷¸¦ membrane filter
system¿¡¼­ ¹è¾çÇÏ¿© ¾ç±Ø¼ºÀ» °®´Â ¸ðµ¨À» ¼³Á¤ÇÔÀ¸·Î¼­ ÀÌ ¸ðµ¨ÀÇ Å¸´ç¼º¿©ºÎ¸¦ °ËÁ¤ÇÏ
°í ÀÌ ¸ðµ¨ÀÌ Å¸´çÇÏ´Ù¸é À̸¦ ÀÌ¿ëÇÏ¿© LLC-PKI ¼¼Æ÷¸·ÃþÀ» ÅëÇÑ ¼ö»êÀÇ À̵¿ÀÇ ±âÃÊÁö
½ÄÀ» ¾ò°íÀÚ ÇÏ¿´´Ù.
#ÃÊ·Ï#
Purpose : Recently, studies on erythrocytes from stone forming patients and on renal
papillary cells from stone forming rats demonstrated abnormalities of oxalate transport,
and it has been suggested that these abnormalities of oxalate transport might play an
important role upon the lithogenesis of the renal stones. However evidences are still
lacking, and need to be clarified. In order to fortify that hypothesis, it is the first step
to get exact informations on renal oxalate handling. In this study, the author tried to
evaluate the validity of in vitro experimental model using membrane filter system, and
to get an exact understanding about how oxalate is transported through the renal
tubular epithelial cells, if that experimental model is valid.
Materials and Methods : LLC-PK1 cell line, derived from porcine proximal renal
tubular epithelial cell, was supplied from American Type Culture Collection(ATCC).
After the cells were made confluent on the 0.02¥ìm membrane filter,
3H-inulin transport through this membrane was measured to make sure
that the membrane is functionally intact. For the measurement of oxalate transport, 50¥ì
M of 3C -oxalate was used and the amount of oxalate transported was
calculated from the radioactivities.
Results : 1 The LLC-PK1 cells cultured on the membrane filter formed functionally
intact renal tubular epithelial layer. 2. Even though there was a bidirectional movement
of the oxalate through the proximal renal tubular epithelial cell layer, net secretion of
the oxalate from interstitium to renal tubular lumen was identified. 3. Before the
secretion of the oxalate, most of the oxalate was accumulated into the cell. 4.
Oxalate/chloride exchange transport pattern was identified mainly at the apical surface
of the proximal renal tubular epithelial cells, but was not affected by the change of the
luminal acidity.
Conclusions : Oxalate was secreted through the proximal renal tubular epithelial cells
after accumulation into the cells, and oxalate/chloride exchange transport system was
found mainly at the apical surface of the LLC-PK1 cells.
(Korean J Urol 1998; 39: 540¡­52)

Å°¿öµå

Proximal renal tubule; Epithelial cell; Oxalate; Transport;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS