Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

ÈòÁã¿¡¼­ DeferoxamineÀÌ ½Å ÇãÇ÷ ÈÄ Àç°ü·ù¿¡ ÀÇÇØ À¯¹ßµÇ´Â ½Å¼Õ»ó¿¡ ¹ÌÄ¡´Â ¿µÇâ Effect of Deferoxamine on Renal Function following Renal Ischemia/Reperfusion in the Rat

´ëÇѺñ´¢±â°úÇÐȸÁö 1998³â 39±Ç 7È£ p.615 ~ 621
¹èÀμö, Á¤Èñâ, ¹Úµ¿Ãá,
¼Ò¼Ó »ó¼¼Á¤º¸
¹èÀμö (  ) 
¿µ³²´ëÇб³ ÀÇ°ú´ëÇÐ ºñ´¢±â°úÇнÇ

Á¤Èñâ (  ) 
¿µ³²´ëÇб³ ÀÇ°ú´ëÇÐ ºñ´¢±â°úÇнÇ
¹Úµ¿Ãá (  ) 
¿µ³²´ëÇб³ ÀÇ°ú´ëÇÐ ºñ´¢±â°úÇнÇ

Abstract

¼­·Ð
½ÅÀ̽ļúÀ̳ª ½ÅÇ÷°üÀç°Ç¼ú°ú °°Àº ½ÅÇ÷·ùÀÇ ÀϽÃÀû Â÷´Ü°ú Àç°ü·ù(ÇãÇ÷/Àç°ü·ù)¸¦ ÀÏÀ¸
Å°´Â ¼ö¼úÀº ¾à 5-30%ÀÇ È¯ÀÚ¿¡¼­ ±Þ¼º¼¼´¢°ü±«»ç¿Í °°Àº ÇÕº´ÁõÀÌ À¯¹ßµÇ¾î ¼ö¼ú ÈÄ ½É°¢
ÇÑ ½Å±â´É Àå¾Ö°¡ ¾ß±âµÇ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. 1ÇãÇ÷/Àç°ü·ù¿¡ ´ëÇÑ ¿¬±¸´Â °£, Æó, ½ÅÀå,
Àå, ,ÃéÀå ÇǺεîÀÇ ¿©·¯ ±â°ü¿¡¼­ ½ÃÇàµÇ¾î ¿ÔÀ¸¸ç, ÇöÀç±îÁö ÇãÇ÷/Àç°ü·ù·Î ÀÎÇÑ Á¶Á÷¼Õ»ó
ÀÇ º´ÀÎÀ¸·Î¼­ ´Â »ó¿ÂÇÏ ÇãÇ÷¼Õ»ó(wairil ischenuc injury), Àú¿ÂÇÏ ÇãÇ÷¼Õ»ó(cold ischemic
injury) ¹× Àç°ü·ù¼Õ»ó(reperfusion injury)µîÀÌ °ü¿©ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ƯÈ÷ Àç°ü·ù¼Õ
»óÀº Ç÷·ùÀÇ Àç°³Åë ÈÄ Á¶Á÷³»¿¡ ¹Ì¼¼Ç÷°üÀÇ Æó¼â·Î Ç÷ÇàÀÇ Àç°³°¡ ºÒ°¡´ÉÇÑ Çö»ó(no
reflow phenomena)°ú Á¶Á÷³»·Î ¹Ì¼¼Ç÷°üÀÇ Æó¼â¾øÀÌ Ç÷ÇàÀÌ Àç°³µÇÁö¸¸ ¿°Áõ¹ÝÀÀ ¹× Á¶Á÷
¼Õ»óÀ» ¸Å°³ÇÏ´Â ¹°ÁúÀÇ »ý¼ºÀ¸·Î »ý±â´Â ö»óÀÎ reflow paradox°¡ °ü¿©ÇÔÀÌ º¸°íµÇ¾ú´Ù.
ÇöÀç ÀÓ»óÀûÀ¸·Î Àå±â¸¦ ³Ã¿ÂÇÏ¿¡ º¸°üÇϰųª ¼ö¼ú½Ã¿¡ Àú¿Â¾×À¸·Î °ü·ùÇÔÀ¸·Î½á, ¶Ç´Â
saccharide³ª lactobionateµîÀÇ ºÒÅõ°ú¼º ¹°ÁúÀ» »ç¿ëÇÔÀ¸·Î½á ÇãÇ÷¼Õ»óÀ» °¨¼Ò½Ãų ¼ö ÀÖ¾î,
¿©·¯ Àå±â¿¡ ´ëÇÑ ÀÌ½Ä ¼ö¼úÀ» ºñÀÀ±Þ ¼ö¼ú·Î Àüȯ½ÃÅ°°Ô µÇ¾ú´Ù. ±×¸®°í Àå±â À̽ļú½Ã Àç
°ü·ù·Î ÀÎÇÑ Á¶Á÷¼Õ»óÀ» °¨¼Ò½ÃÅ°±â À§ÇØ »ç¿ëµÇ´Â mannitol°ú hydroxyethylstarch µîÀÇ ¾à
¹°Àº Á¶Á÷ ³»ÀÇ ¹Ì¼¼Ç÷°ü Æó¼â¸¦ ¹æÁöÇÏ¿© no reflow phenomenaÀÇ ¿¹¹æ¿¡ µµ¿òÀÌ µÈ´Ù ±×
·¯³ª Á¶Á÷³»ÀÇ ¹Ì¼¼Ç÷°üÀÇ Ç÷·ù Àç°³°¡ ÀϾ¶§ ¾ß±âµÉ ¼ö ÀÖ´Â reflow paradox¸¦ ¿¹¹æÇÏ
±â À§ÇØ ¿©·¯°¡Áö Ç×»êÈ­Á¦°¡ ½ÇÁ¦ ÀÓ»óÀûÀ¸·Î Àû¿ëµÇ°í ÀÖÀ¸³ª ÇöÀç±îÁöÀÇ °á°ú´Â ¿ÏÀüÇÏ
Áö ¾Ê°í, ¶ÇÇÑ Á¶Á÷ÀÇ Àç°ü·ù¼Õ»óÀÌ ÇãÇ÷½Ã ¼Õ»óº¸´Ù ´õ ½É°¢ÇÑ °ÍÀ¸·Î ¿©°ÜÁö°í ÀÖ´Ù.
Àç°ü·ù½Ã ¾ß±âµÉ ¼ö ÀÖ´Â reflow paradox´Â »ê¼Ò°¡ À¯ÀԵʿ¡ µû¶ó ÇãÇ÷ Á¶Á÷¿¡ ÃàÀûµÇ¾ú
´ø ATPÀÇ Áß°£ ´ë»ç»ê¹°ÀÎ hypoxanthlneÀÌ xanthine oxidase(XO)ÀÇ °ü¿©ÇÏ¿¡ xanthne°ú
¿ä»êÀ¸·Î ´ë»çµÈ´Ù ÀÌ »êÈ­¹ÝÀÀÀÇ °úÁ¤¿¡¼­ È°¼º»ê¼Ò·ù(oxygen free radlcal, OFR)ÀÎ
su-perolude anion(O-)ÀÌ »ý¼ºµÇ°í dzºÎÇÑ ¾çÀÇ ironÀ» Ã˸ŷΠÇÏ¿© ´õ¿í µ¶¼ºÀÌ °­ÇÑ
hydroxyl radicalÀ» »ý¼ºÇÑ ´Ù »ý¼ºµÈ OFRÀº ¿¬¼âÀûÀ¸·Î Á¶Á÷³» ÁöÁúÀÇ °ú»êÈ­ ¹ÝÀÀ(hpld
peroxldatlon)À» ¾ß±â½ÃÄÑ ¼¼Æ÷¼Õ»óÀ» ÃÊ·¡ÇÏ°í ÃÖÁ¾ ´ë»ç»ê¹°ÀÎ malonyldialdehyde(MDA)
¸¦ »ý¼º½ÃŲ´Ù. ±×·¯³ª »ýü³»¿¡ Á¤»óÀûÀ¸·Î Á¸ÀçÇÏ´Â glutathlone (GSH)Àº hydrogen
peroxide(H2O2)¿Í ¹ÝÀÀÇÏ¿© OFRÀÇ Çص¶¿¡ °ü¿©ÇÔÀÌ ÀÔÁõµÈ ¹Ý
ÀÖ°í, öÁßµ¶ÁõÀ̳ª thalassemiaÀÇ Ä¡·á¿¡ »ç¿ëµÇ¾îÁö´ø deferoxamlneÀº iron°ú °­·ÂÈ÷ °áÇÕ
ÇÏ·Á´Â ¼ºÁúÀÌ ÀÖ¾î OFR »ý¼º °¨¼ÒÀÇ °¡´É¼ºÀÌ Á¦½ÃµÈ ¹Ù ÀÖ´Ù.
¿À´Ã³¯ ¸¸¼º½ÅºÎÀü ȯÀÚÀÇ ±Ùº»ÀûÀÎ ÇØ°áÃ¥À¸·Î ½ÅÀåÀ̽ÄÀÌ º¸ÆíÈ­µÇ°í ÀÖÀ¸¸ç, ¼ú±â¹ýÀÇ
Çâ»ó, ¸é¿ª ¾ïÁ¦Á¦ÀÇ °³¹ß ¹× ½Å º¸Á¸¾×ÀÇ °³¹ß·Î ¼º°øÀûÀÎ ½ÅÀÌ½Ä ¼úÀÌ ½ÃÇàµÇ°í ÀÖÀ¸³ª,
ÀϺο¡¼­´Â ¼ö¼ú ÈÄ Ä¡¸íÀûÀÎ ½Å±â´É ¼Õ»óÀÌ ¾ß±âµÉ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ Çö»óÀ» ¹æÁöÇϱâ À§ÇØ,
½Å Á¶Á÷ÀÇ ÇãÇ÷/Àç°ü·ù ¼Õ»óÀ» ÁÙÀÌ´Â OFR ¾ïÁ¦ ¹°ÁúÀÇ °³¹ß°ú ½Å À̽Ľà ½Å¼Õ»óÀ» ÁÙÀÏ
¼ö ÀÖ´Â Àå±â º¸Á¸¾×ÀÇ Çâ»ó, ±×¸®°í ½ÅÀ̽ļú ÈÄ Á¶±â¿¡ OFRÀÇ Áõ°¡·Î ÀÎÇÑ ½Å±â´É ¼Õ»ó
À» ÆľÇÇÒ ¼ö ÀÖ´Â ÁöÇ¥ÀÇ È®¸³ÀÌ ÇÊ¿äÇϸ®¶ó »ý°¢ÇÑ´Ù
º» ¿¬±¸´Â ½Å ÇãÇ÷/Àç°ü·ù ÈÄ OFR¿¡ ÀÇÇØ ¾ß±âµÉ ¼ö ÀÖ´Â ½Å¼Õ»óÀÇ Á¤µµ¸¦ ¹Ý¿µÇÒ ¼ö ÀÖ
´Â ÁöÇ¥ÀÇ È®¸³°ú OFR¾ïÁ¦ ¹°ÁúÀ» Ãß±¸Çϱâ À§ÇØ, Ⱥ ÁãÀÇ ½Å ÇãÇ÷/Àç°ü·ù ÈÄ Ç÷¾×°ú ½Å
¸¶¼âÁ¶Á÷¿¡¼­ XO È°¼ºµµ ¹× Çü ÀüȯÀ², GSH, MDA ÇÔ·®À» ÃøÁ¤ÇÏ°í, ¶ÇÇÑ iron chelatorÀÎ
deferoxamineÀÌ ½Å ÇãÇ÷/Àç°ü·ù¿¡ ÀÇÇØ ¹ß»ýµÇ´Â OFR¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¾Ë¾Æº¸±â À§ÇÏ¿©
º» ¿¬±¸¸¦ ½ÃµµÇÏ°Ô µÇ¾ú´Ù
#ÃÊ·Ï#
Purpose : It has been suggested in our previous study that the serum level of
xanthine oxidise(XO) activity, glutathione(GSH), malonyldialdehyde(MDA) could be used
as marker of oxidant stress in association with renal ischemia/reperfusion(I/R) injury.
The present study was undertaken to establish the early marker of renal 1/R injury and
to investigate the effect of deferoxamine on renal 1/R injury.
Materials and Methods : In Sprague-Dawley rats(male, 200-250gm, n=60), bilateral
renal arteries were clamped for 60mins after pretreatment with deferoxamine(group A)
or saline(group B). After 30min of bilateral renal recirculation, left nephrectomy and
blood sampling in inferior vena cava were performed for in-vitro spectrophotometric
study. Control animals(group C) did not undergo I/R operation. In-vivo renal function
studies were performed in both group A and B with measurement of creatinine
clearance rate(Ccr) at 7th day of experiments a%or renal ischmia for 60min.
Results: The levels of XO activity and XO type conversion ratio in renal tissue (RT)
and serum(5) were measured. These levels were significantly high in group B, but were
lower in group A compared to those of control group. The values of GSH(¥ìM/g
tissue), a scavenger of OFR, were decreased in group A (RT:0.183¡¾0.019,5:0.201¡¾0.029)
and greatly decreased in group B(RT:0.159¡¾0.009,5:0.164¡¾0.022) compared to control
group(RT:0.201¡¾0.006,5:0.224¡¾0.031). The values of MDA(nM/g tissue), a stable end
product of lipid peroxidation, were increased in group A(RT:0.149¡¾0.003, 5:0.058¡¾0.004)
compared to control group(RT:0.128¡¾0.013, 5;0.055¡¾0.005), but the values were
significantly lower in group A compared to group B(RT:0.171¡¾0.005, 5:0.070¡¾0.003).
Subsequent investigation was focused on the established renal function study after 1/R,
which was determined using Ccr(ml/min). The Ccr in group A(2.06¡¾0.03) was
significantly higher compared to that of group 8(1.48¡¾0.18), although it was slightly
lower than in control group(2.18¡¾0.05).
Conclusions : From these results, it is suggested that renal I/R injury is highly
correlated with the production of OFR. The levels of GSH and MDA in renal tissue and
serum seem to be probable markers of oxidant stress in association with renal I/R
injury. Furthermore, deferoxamine could reduce the degree of renal damage resulting
from ameliorating the production of OFR following renal I/R injury. (Korean J Urol
1998; 39: 615¡­21)

Å°¿öµå

Renal ischemia/reperfusion injury; Deferoxamine; Renal function;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS