Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

°æÃß ½Å°æ±Ùº´Áõ¿¡¼­ Short Tau Inversion Recovery Sequences¸¦ ÀÌ¿ëÇÑ MR ½Å°æ¹¦»ç Magnetic Resonance Neurography with Short Tau Inversion Recovery Sequences for Cervical Radiculopathy

´ëÇѽŰæ¿Ü°úÇÐȸÁö 1997³â 26±Ç 3È£ p.407 ~ 408
¼Ò¼Ó »ó¼¼Á¤º¸
À̽¹Î/Seung Min Lee ¾çÀ翵/ÃÖõ½Ä/ÁÖ¹®¹è/À±Àº°æ/Jae Young Yang/Chun Sik Choi/Mun Bae Ju/Eun Kyung Youn

Abstract

¼­ ·Ð
°æÃß µð½ºÅ©³ª °æÃßÁõ¿¡ ÀÇÇØ ¾ß±âµÇ´Â °æÃß ½Å°æ±Ùº´ÁõÀÇ ¹æ»ç¼±ÇÐÀû Áø´ÜÀ» À§ÇÏ¿© Çö
Àç°¡Áö ô¼ö°­ Á¶¿µ¼ú, CT, ¶Ç´Â ±âÁ¸ÀÇ spin echo MR imaging(SE MRI)µîÀÇ ¹æ¹ýÀÌ ÁÖ·Î
»ç¿ëµÇ°í ÀÖ´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¹æ¹ýµé·Î½á´Â º´¼Ò-µð½ºÅ©³ª °ñÁõ½Äü-ÀÚüµé¿¡ ´ëÇÑ Á¤º¸
¹× ±× º´¼ÒµéÀÌ À§Ä¡ÇÏ°í ÀÖ´Â ºÎÀ§¸¸À» ¾Ë ¼ö ÀÖÀ» »Ó ±× º´¼Òµé¿¡ ÀÇÇÏ¿© Á÷Á¢ ¾Ð¹Ú¹Þ°í
ÀÖ´Â °æÃß ½Å°æ±Ùµé¿¡ ¾î¶°ÇÑ º¯È­°¡ ¿Í ÀÖ´ÂÁö¸¦ ¾Ë ¼ö´Â ¾ø´Ù. µû¶ó¼­ ±âÁ¸ÀÇ ¹æ»ç¼±ÇÐÀû
¼Ò°ß»ó º´¼Ò°¡ º¸ÀÏ ¶§, ´Ü¹ß¼º º´¼Ò°¡ ÀÖ´Â °æ¿ì ÀÌ º´¼Ò°¡ ÀÓ»ó Áõ»óÀÇ È®½ÇÇÑ ¿øÀÎÀÌ µÇ
´Â Áö¸¦ ÆÇ´ÜÇϱâ À§ÇÏ¿©, ±×¸®°í ´Ù¹ß¼º º´¼Ò°¡ ÀÖ´Â °æ¿ì ¾î¶² º´¼Ò°¡ ÁÖ¿øÀÎÀÌ µÇ´Â º´
¼ÒÀÎÁö¸¦ ÆÇ´ÜÇϱâ À§ÇÏ¿© ÀÓ»ó ¡Èijª ±ÙÀüµµ, À¯¹ßÀüÀ§ µî°ú °°Àº ÀüÁöÀû Áø´Ü kd¹ý µî¿¡
ÀÇÁ¸ÇÏ°í ÀÖ´Ù. ±×·¯³ª »ó±â ¾ð±ÞÇÑ ¸ðµç ¹æ¹ýµé¿¡ ÀÇÇؼ­µµ Á¤È®ÇÑ Áø´Ü ¹× ¼ö¼ú °áÁ¤À»
Çϱ⿡ ¸ðÈ£ÇÑ °æ¿ìµéµµ »ó´ç¼ö ÀÖ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù.
ÃÖ±Ù Andrew µîÀº °æÃß ½Å°æ±Ùº´ÁõÀÌ ÀǽɵǴ 3¸íÀÇ È¯ÀÚ¿¡°Ô Ư¼öÇÏ°Ô °í¾ÈµÈ
phased-array coil systemÀ» ÀÌ¿ëÇÑ STIR MR ½Å°æ¹¦»ç(neurography)¸¦ ½ÃÇàÇÑ °á°ú Á÷Á¢
¾Ð¹Ú¹Þ°í ÀÖ´Â °æÃß ½Å°æ±Ù¿¡¼­ ºÐÁöµÈ °æÃß ½Å°æ(cervical spinal nerve) ¶Ç´Â Àü¹æ ÁÖ ½Å°æ
Áö (ventral primary ramus)ÀÇ MR signalÀÌ Á¤»óÀÇ ±×°Í¿¡ ºñÇØ ÇöÀúÈ÷ Áõ°¡µÇ¾î ÀÖ´Ù´Â
°Í°ú µû¶ó¼­ STIR MR½Å°æ¹¦»ç°¡ °æÃß µð½ºÅ©³ª °æÃßÁõ ȯÀÚÀÇ Á¤È®ÇÑ Æò°¡¿¡ µµ¿òÀÌ µÇ
´Â Áø´Ü ¹æ¹ýÀÌ µÉ ¼ö ÀÖ´Ù°í º¸°íÇÏ¿´´Ù. ±×·¯³ª À̵éÀÌ ÀÌ¿ëÇÑ pleased-array coil system
Àº »ó´çÈ÷ °í°¡Àε¥´Ù ±¸Çϱ⵵ ¸Å¿ì ¾î·Æ´Ù´Â ´ÜÁ¡ÀÌ ÀÖ´Ù. ±×·¯¹Ç·Î ÀúÀÚµéÀº ±âÁ¸ÀÇ
posterior neck coilÀ» ÀÌ¿ëÇÑ STIR MR ½Å°æ¹¦»ç¸¦ °æÃß ½Å°æ±Ùº´ÁõÀÌ ÀǽɵǴ ȯÀڵ鿡
°Ô ½ÃÇà ±× °á°ú¸¦ °üÂûÇÏ°í Áõ·Ê º¸°íµéÀ» ÅëÇØ ÀÌ·¯ÇÑ ¹æ¹ýÀÌ ÀÓ»óÀû °¡Ä¡°¡ ÀÖ´Â Áø´Ü
¹æ¹ýÀÌ µÉ ¼ö ÀÖ´ÂÁö¸¦ ¾Ë°íÀÚ ÇÑ´Ù.
#ÃÊ·Ï#
In magnetic resonance(MR) imagings with short tau inversion recovery(STIR)
sequences fat signals are specifically suppressed. These imaging technique, therefore,
have been used to identify optic nerve lesions in the orbits, because there are a lot of
fat tissues which may obscure the optic nerves in the orbit. the cervical spinal nerves
or ventral primary rami of brachial plexus, during their courses in the necks between
anterior and middle scalene muscles, are also surrounded by considerable amount of fat
deposits. So we used these MR imaging techniques with already used posterior neck coil
system, to image cervical spinal nerves directly, and to know whether there are certain
signal changes in those nerves of the involved nerve roots, in 12 patients who were
considered to have cervical radiculopathies by conventional diagnostic menas. In MR
neurosurgraphy with STIR sequences(STIR MRN) of axial and coronal images, signals
of the cervical spinal nerves of the involved roots. We also measured contrast-to-noise
ratio(CNR) of the spinal nerve signals of the involved and uninvolved roots in axial
images. The average CNR value of the former was 4.48¡¾0.889 and of the latter 1.40¡¾
0.274. Our findings indicate that STIR MRNs can be helpful in limiting the lesions more
accurately and in making surgical decisions for cervical radiculopathies caused by
multileveled discs or spondylosis.

Å°¿öµå

MR neurography; STIR sequences; Cervical spinal nerve; Radiulopathy.;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KoreaMed
KAMS