Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

ÇüÁúÀüȯµÈ »ýÁã NIH/3T3 ¼¼Æ÷¿¡¼­ MetallothioneinÀÌ CisplatinÀÇ ³»¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ The Effect of Metallothionein on the Resistance to Cisplatin in Transfected Mouse NIH/3T3 Cells

´ëÇѾÏÇÐȸÁö 1997³â 29±Ç 4È£ p.576 ~ 583
¼Ò¼Ó »ó¼¼Á¤º¸
¼Õ¸íÈñ/Myung Hee Sohn °ûÀç¿ë/ÀÓâ¿­/¼Õ¸íÈñ/°ûÀç¿ë/ÀÓâ¿­/Jae Yong Kwak/Chang Yeol Yim/Myung Hee Sohn/Jae Yong Kwak/Chang Yeol Yim

Abstract

°á·Ð
CisplatinÀÇ ³»¼º¹ß»ýÀÇ ¿øÀÎÀ¸·Î¼­ metallothioneinÀÇ ¿ªÇÒ¿¡ ¸¹Àº ³í¶õÀÌ ÀÖ´Ù. ÀÌÁ¦±îÁö
ÀÇ ¿¬±¸µéÀº metallothioneinÀÌ Áõ°¡µÈ ¼¼Æ÷¸¦ cadmium°ú °°Àº Á߱ݼÓÀ» ÷°¡ÇÏ¿© ¾ò¾ú´Ù.
±×·¯³ª ÀÌ·± µ¶¼ºÀÌ °­ÇÑ Á߱ݼӵéÀº ¼¼Æ÷¸¦ ¿©·¯ ¹æÇâÀ¸·Î º¯Çü½Ãų ¼ö ÀÖ´Ù. µû¶ó¼­ º»
¿¬±¸¿¡¼­´Â cisplatinÀÇ ¼¼Æ÷³»¼º¿¡ metallothioneinÇÔ·®¸¸ÀÇ ¿ªÇÒÀ» ±Ô¸íÇϱâ À§Çؼ­ ¼¼Æ÷¸¦
Á߱ݼӿ¡ ³ëÃâ½ÃÅ°Áö ¾Ê°í metallothioneinÀ» constitutiveÇÏ°Ô »ý¼ºÇÒ ¼ö ÀÖµµ·Ï plasmid¸¦
Á¶¼ºÇÏ¿© »ýÁã NIH/3T3¼¼Æ÷¸¦ ÇüÁúÀüȯÇÏ¿© metallothioneinÀÇ ÇÔ·®¸¸ÀÌ ´Ù¸¥ ÇüÁúÀüȯ¼¼Æ÷
¿¡¼­ cisplatinÀÇ µ¶¼ºÀ» ºñ±³ÇÏ¿´´Ù.
MT¼¼Æ÷¿¡¼­´Â metallothioneinÀÇ ¾çÀº ´ëÁ¶±ºÀÎ TM°ú BPA¼¼Æ÷¿¡ ºñÇØ ¾à 15¹è ´õ ¸¹¾Ò
À¸³ª ¼¼Æ÷¼ö¸¦ ¹ÝÀý·Î °¨¼Ò½Ãų ¼ö ÀÖ´Â cisplatinÀÇ ³óµµÀÎ IC-50Àº Â÷À̸¦ º¸ÀÌÁö ¾Ê¾Ò´Ù.
°á°úÀûÀ¸·Î ¼¼Æ÷ ³» metallothioneinÀÇ ÇÔ·®¿¡´Â Å« Â÷ÀÌ°¡ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í cisplatinÀÇ
³»¼º¿¡´Â Â÷À̸¦ º¸ÀÌÁö ¾ÊÀ½À¸·Î metallothioneinÀÇ Áõ°¡¸¸À¸·Î´Â Á¾¾ç¼¼Æ÷°¡ cisplatin¿¡
´ëÇÑ ³»¼ºÀ½ À¯¹ßÇϱ⿡´Â ºÒÃæºÐÇÔÀ» º¸¿© ÁÖ¾ú´Ù.
#ÃÊ·Ï#
Purpose: Metallothionein is an intracellular cystein-rich thiol-containing protein.
Increased metallothionein content in tumor cells has been suggested to be a mechanism
of resistance to cisplatin. In most of previous studies evaluating the role of
metallothionein in cisplatin resistance, tumor cells were usually exposed to cadmium to
increase metallothionein content. Therefore, cisplatin resistance of the cells may be
related to cadmium exposure itself, which induces various changes in cell characteristics,
but not to increased metallothionein content. The purpose of this study is to evaluate
the role of metallothionein content alone in cellular resistance to cisplatin without
exposure of cells to cadmium.
Materials and Method: We measured the toxicity of cisplatin in mouse NIH/3T3 cells
that vary in their content of metallothionein as a consequence of transfection with a
plasmid that result in the constitutive expression of metallothionein. MT cells were
derived from NIH/3T3 cells by transfection with a plasmid containing the genome of
bovine papilloma virus and the mouse metallothionein-I, derived by the promoter for the
glucose-regulated protein of 78kD. Control cells were similary transfected with bovine
papilloma virus-based plasmids with the gene for metallothionein inverted and thus
separated from the promoter(TM), or deleted, along with promoter(BPA). The number of
copies of the plasmid were similar in each kind of transfected cells. Expression of
metallothionein required neither selection nor maintenance of cells in the presence of
heavy metals.
Results: Synthesis of metallothionein was 15-fold greater in the MT cells than in the
TM or BPA cells. The concentration of cisplatin sufficient to reduce the cells per well
by one-half(IC-50) was 0.40¡¾0.075 uM in MT cells. In TM and BPA cells, it was 0.36
¡¾0.035 uM and 0.423¡¾0.032 uM. There were no significant differences in IC-50 between
three cell lines.
Conclusion: In spite of large differences between MT and control cells in their cellular
content of metallothionein, no differences in resistance to cisplatin were observed.

Å°¿öµå

Metallothionein; Cisplatin; Transfection;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KoreaMed
KAMS