Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

12-O-Tetradecanoylphorbol-13-Acetate¿¡ ÀÇÇÑ HL-60 ¼¼Æ÷ ºÐÈ­À¯µµ Áß Vimentin À¯ÀüÀÚ Àü»çÁ¶Àý¿¡ ´ëÇÑ AP-1ÀÇ ¿ªÇÒ Role of AP-1 on Transcriptional Regulation of Vimentin Gene during 12-0-Tetradecanoylp herb o 1-13-Acetate-Depend eat Differentiation of HL-60 Cells

´ëÇѾÏÇÐȸÁö 1998³â 30±Ç 5È£ p.997 ~ 1004
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÓ±Ô ±èÁøÈñ/±Çµµ¿ø/±è½Â¹Î/ÀÌ¸í¼±/À±°æ¾Æ/¼Õ¹Ì¿µ/¹ÚÁ¾ÀÏ/À±¿ÏÈñ

Abstract

¼­·Ð
VimentinÀº ¼¼Æ÷ÀÇ °ñ°Ý(cytoskeleton)¿¡ À־ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â intermediate
filamentsÀÇ ÀÏÁ¾À¸·Î ±× ±â´ÉÀº Àß ¾Ë·ÁÁ® ÀÖÁö ¾Ê´Ù. ÀÌ´Â Áß°£¿±(mesenchyma)¿¡¼­ ±â¿ø
ÇÏ´Â ¼º¼÷ÇÑ ¼¼Æ÷¿¡¼­ ¹ßÇöµÇ´Â µî ¼¼Æ÷¹ß´Þ °úÁ¤ Áß Á¶ÀýµÉ »Ó¸¸ ¾Æ´Ï¶ó, ¶ÇÇÑ ¹è¾ÆÀÇ ±â
¿ø(embryonic origin)°ú´Â ¹«°üÇÏ°Ô ¹è¾ç¼¼Æ÷¿¡¼­µµ ¹ßÇöµÈ´Ù. Vimentin mRNA´Â ¼ºÀåÀÌ
Á¤ÁöµÇ¾î ÀÖ´Â ¼öÁ¾ ¼¼Æ÷(quiescent cells)µéÀ» ¼ºÀåÀÎÀÚµé·Î ó¸®ÇßÀ» ¶§ Áõ°¡Çϳª K562 ¼¼
Æ÷ ¹× »ýÁã °ñ¼ö¾Ï¼¼Æ÷(myeloma cells) µîÀ» phorbol ester·Î ó¸®ÇÏ¿© ±× ¼ºÀåÀ» ¾ïÁ¦ÇßÀ»
¶§µµ Áõ°¡ÇÔÀ¸·Î ¼¼Æ÷ÀÇ Á¾·ù¿¡ µû¶ó ±× Á¶Àý ±âÀüÀÌ ´Ù¾çÇÏ´Ù°í º¸°íµÇ¾î ÀÖ´Ù. ÇÑÆí ¼öÁ¾
ÀÇ ¹éÇ÷º´ ¼¼Æ÷ÁÖµéÀÌ ¹éÇ÷º´¼¼Æ÷ ºÐÈ­¿¬±¸¿¡ ÀÌ¿ëµÇ°í ÀÖ´Â ¹Ù Áï myeloblastsÀÎ KG-1,
promyelocytic ¼¼Æ÷ÁÖÀÎ HL-60, monocytic ¼¼Æ÷ÁÖÀÎ U937 µîÀÌ ÀÖ´Ù. ÀÌÁß HL-60¼¼Æ÷´Â
±Þ¼º °ñ¼ö±¸¼º ¹éÇ÷º´ ¼¼Æ÷ÁÖ·Î 12-O-tetradecanoylphorbol 13-acetate(TPA)·Î ó¸®ÇßÀ»
¶§ monocyte/macrophage·Î ºÐÈ­ µÉ »Ó¸¸ ¾Æ´Ï¶ó TPA 󸮷Πvimentin mRNA°¡ Áõ°¡ÇÏ´Â
µî ºÐÈ­À¯µµÁ¦¿¡ µû¸¥ vimentin ¹ßÇöÀÌ º¸°íµÇ°í ÀÖ´Ù. ÃÖ±Ù vimentin À¯ÀüÀÚ°¡ cloningµÇ¾ú
À¸¸ç AP-1/jun °áÇÕºÎÀ§°¡ Ç÷û¿¡ ÀÇÇÑ vimentin mRNA À¯µµ¿¡ °ü·ÃµÇ¾î ÀÖ´Ù°í ¾Ë·ÁÁ®
ÀÖ´Ù. ÀÌ¿¡ ÀúÀÚ´Â ºÐÈ­À¯µµÁ¦¿¡ µû¶ó HL-60¼¼Æ÷ ºÐÈ­±âÀüÀÌ ´Ù¸¥¹Ù ±× ±âÀüÀÇ Â÷ÀÌÁ¡ ¹×
Á¶Àý±âÀüÀ» ¹àÈ÷±â¿¡ ¾Õ¼­ ¸ÕÀú HL-60 ¼¼Æ÷¸¦ model·Î ÇÏ¿© TPA¸¦ ÀÌ¿ëÇÏ¿©
monocyte/macrophage·Î ºÐÈ­ À¯µµÇϸ鼭 °ñ¼ö ƯÀÌ À¯ÀüÀÚ(myeloid-specific genes)Áß
vimentin À¯ÀüÀÚÀÇ Á¶Àý±âÀüÀ» ±¸¸íÇÏ¿´´Ù

Purpose : To gain insight on the role of AP-1 in transcriptional regulation of vimentin
gene during differentiation of HL-60 cells by 12-0-tetradecanoylphorbol-13-acetate
(TPA), the levels of vimentin mRNA and AP-1 have been investigated with Northern
blot hybridization and DNA mobility shift assay.
Materials and Methods : HL-60 cells were grown in RPMI 1640 medium supplemented
with 10% heat-inactivated fetal calf serum and antibiotics in a humidified 5%
CO2 at 37¡É Total RNA was prepared by a modification of the method of
Karlinsey et al. Northern blot hybridization was performed by the method of Virca et al.
EcoRI fragment of pVIM-GEM was used as probe for vimentin mRNA. DNA mobility
shift assay was performed by the method of Lim et al. End labeled DNA probe(Upper
strand, 5'-CGCTTGATGAGTCAGCCG-3') for AP-1 binding activity was mixed with
nuclear extracts in a 20 ¥ìl reaction volume containing 300 mM KCI, 60 mM HEPES,
pH 7.9, 25 mM MgCl2, 1 mM EBTA, 1 mM DTT, 60% glycerol, and 2¥ìg
of poly[dl-dC].
Results : TPA increased vimentin mRNA levels, with maximal stimulation reached at 24
hr. The level of vimentin mRNA was induced in proportion to the concentration of TPA.
TPA-induced vimentin mRNA was almost reduced by actinomycin-D pretreatment.
TPA-induced stimulation of vimentin gene was completely reduced by staurosporin
pre-treatment. In DNA mobility shift assay, AP-1 newly appeared at 24 hr during
TPA-induced differentiation and was almost not detected after the pretreatment of
staurosporin.
Conclusions: These results suggest that the induction of vimentin mRNA during
TPA-dependent differentiation in HL-60 cells may be mediated by protein kinases C
signal transduction and AP-1 is important to transcriptional regulation.

Å°¿öµå

Vimentin; AP-1; Staurosporin; TPA; HL-60;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KoreaMed
KAMS