Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¼±Çü°¡¼Ó±âÀÇ 6 MV X-¼±¿¡ ´ëÇÑ ¼ÒÇü Á¶»ç¸é ÃøÁ¤°ú ¸óÅ× Ä«¸¦·Î ½Ã¹Ä·¹ÀÌ¼Ç Measurement and Monte Carlo Simulation of 6 MV X-rays for Small Radiation Fields

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 1998³â 16±Ç 2È£ p.195 ~ 202
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤µ¿Çõ/Jeong DH ÀÌÁ¤¿Á/°­Á¤±¸/±è¼ö°ï/±è½Â°ï/¹®¼º·Ï/Lee JO/Kang JK/Kim SK/Kim SK/Moon SR

Abstract

¸ñ Àû : ¹æ»ç¼±¼ö¼úÀÇ Ä¡·á°èȹ¿¡ ÇÊ¿äÇÑ ±âº»ÀڷḦ ¾ò±â À§ÇÏ¿©, 6 MV X-¼±ÀÇ ¼ÒÇü Á¶»ç¸éÀ» ÃøÁ¤ÇÏ°í, µ¿ÀÏ Á¶»ç¸é¿¡ ´ëÇÑ ¸óÅ×Ä®·Î °è»êÀ» ¼öÇàÇÏ¿© ±× °á°ú¸¦ ÃøÁ¤ÇÑ ÀÚ·á¿Í ºñ±³ÇÏ¿´´Ù.

Àç·á ¹× ¹æ¹ý : ¿¬±¸¿¡ »ç¿ëÇÑ Á¶»ç¸éÀº SSD 100 cm¿¡¼­ Á÷°æ 1.0, 2.0, ±×¸®°í 3.0 cmÀÎ ¿øÇüÀÇ ¼ÒÇü Á¶»ç¸éÀ̸ç, °¢ Á¶»ç¸é¿¡ ´ëÇÑ ½ÉºÎ¼±·®¹éºÐÀ² (PDD)°ú ºöÃø¸éµµ (Beam profile)¸¦ ±¸ÇÏ¿´´Ù. ÃøÁ¤¿¡´Â ¼ÒÇü ¹ÝµµÃ¼°ËÃâ±â, ¹°ÆÒÅÒ ±×¸®°í ¿ø°ÝÁ¶Á¤ ÀåÄ¡¸¦ ÀÌ¿ëÇÏ¿´´Ù.
¸óÅ×Ä®·Î °è»êÀº EGS4¸¦ ÀÌ¿ëÇÏ¿© ¼öÇàÇÏ¿´À¸¸ç, °è»ê¿¡´Â 6 MV X-¼±ÀÇ ¿¡³ÊÁö ºÐÆ÷¿Í È®»êºö (divergent beam), ¿øÇü Á¶»ç¸é ±×¸®°í ¹°ÆÒÅÒÀ» °í·ÁÇÏ¿´´Ù.

°á °ú : ½ÉºÎ¼±·®¹éºÐÀ²ÀÇ °æ¿ì, °è»ê°ªÀº ÃøÁ¤°ª¿¡ ºñÇÏ¿© ³·Àº °æÇâÀ» º¸¿´À¸¸ç, ¸ðµç Á¶»ç¸é¿¡ ´ëÇÏ¿© ¹°ÆÒÅÒ¼Ó ±íÀÌ 2.0-20.0 cm¿¡¼­ Â÷ÀÌ´Â 0.3-5.7%ÀÇ ¹üÀ§·Î Æò°¡ µÇ¾ú°í, Ç¥¸é ¿µ¿ª¿¡¼­´Â 0.0-8.9%·Î ³ªÅ¸³µ´Ù. ¹°ÆÒÅÒ¼Ó ±íÀÌ 10.0 cm¿¡¼­ 90% ¼±·®ÆøÀº ¸óÅ×Ä®·Î
°è»ê°ú Àß ÀÏÄ¡ÇÏ¿´À¸³ª, ¹ÝÀ½¿µÀÇ °è»ê°ªÀº ¸ðµç Á¶»ç¸é¿¡ ´ëÇÏ¿© ÃøÁ¤°ªº¸´Ù 0.1 cm ÀÛ°Ô ³ªÅ¸³µ´Ù.

°á ·Ð : ÃøÁ¤ÇÑ ¼ÒÇü Á¶»ç¸é¿¡ ´ëÇÑ ½ÉºÎ¼±·®¹éºÐÀ²°ú ºöÃø¸éµµ´Â ¸óÅ×Ä®·Î °è»ê°ú ±Ù»çÀûÀ¸·Î ÀÏÄ¡ÇÏ¿´´Ù. ÆÒÅÒ Ç¥¸é¿µ¿ª°ú ¹ÝÀ½¿µ ¿µ¿ª¿¡¼­ ÃøÁ¤°ª°ú °è»ê°ªÀÇ Â÷ÀÌ°¡ ¸¹ÀÌ ¹ß»ýÇÏ¿´À¸¸ç, ÀÌ·¯ÇÑ ÀÌÀ¯´Â ¸óÅ×Ä®·Î °è»ê ¼öÇà½Ã ´Ü¼øÇÑ ±âÇϱ¸Á¶¸¦ °¡Á¤Ç߱⠶§¹®ÀÌ´Ù.
µû¶ó¼­ ½ÇÁ¦ÀÇ ±âÇϱ¸Á¶¿Í Á¶»ç¸é¿¡ ´ëÇÑ º¸´Ù Á¤È®ÇÑ ÀڷḦ Àû¿ë ÇÒ ¼ö ÀÖµµ·Ï, Áö¼ÓÀûÀÎ ¿¬±¸¸¦ ÇØ¾ß ÇÒ °ÍÀ̸ç, ¸óÅ×Ä®·Î °è»êÀº ÃøÁ¤°ú °ËÁõÀÌ ¾î·Á¿î °æ¿ì¿¡ ´ëÇÏ¿© Á¤È®ÇÑ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖ´Â À¯¿ëÇÑ µµ±¸·Î¼­ ¸¹ÀÌ ÀÌ¿ë µÉ °ÍÀÌ´Ù.

Purpose : In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields.

Materials and Methods : The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a
remote control system were used for the measurement. Monte Carlo simulations were performed using the EGS4 code with the input data prepared for the energy distribution of 6 MV X-rays, beam divergence, circular fields and the geometry of the water phantoms.

Results : In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 2.0 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of 10cm in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated penumbra radii were 0.1 cm shorter than measured values.

Conclusion : The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the
very complicated conditions in measurement and verification.

Å°¿öµå

Small field; Semiconductor detector; Monte Carlo simulation; EGS4

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS