Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

ºØ¼Ò-Áß¼ºÀÚ Æ÷ȹġ·á¸¦ À§ÇÑ ¹Ì¼¼ ¼ÓÁß¼ºÀÚ ¼±·® Ư¼º ¿¬±¸ Dosimetry of the Low fluence Fast Neutron Beams for Boron Neutron Capture Therapy

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 2001³â 19±Ç 1È£ p.66 ~ 73
¼Ò¼Ó »ó¼¼Á¤º¸
À̵¿ÇÑ/Dong Han Lee Áö¿µÈÆ/À̵¿ÈÆ/¹ÚÇöÁÖ/À̼®/ÀÌ°æÈÄ/¼­¼ÒÈñ/±è¹Ì¼÷/Á¶Ã¶±¸/·ù¼º·Ä/À¯ÇüÁØ/°üÈ£½Å/ÀÌâÈÆ/Young Hoon Ji/Dong Hoon Lee/Hyun Joo Park/Suk Lee/Kyung Hoo Lee/So Heigh Suh/Mi Sook Kim*/Chul Koo Cho/Seong Yul Yoo/Hyung Jun Yu/Ho Shin Gwak/Chang Hun Rhee

Abstract

¸ñÀû: ºØ¼Ò-Áß¼ºÀÚ Æ÷ȹġ·á¹ý(Boron Neutron Capture Therapy, BNCT)À» À§ÇØ ¿øÀڷº´¿ø ½ÎÀÌŬ·ÎÆ®·Ð¿¡¼­ ¹ß»ýµÇ´Â ÃÖ´ë¿¡³ÊÁö 34.4 MeVÀÇ ¼ÓÁß¼ºÀÚ(Fast neutron)¸¦ 70 cm ÆĶóÇÉÀ¸·Î °¨¼Ò½ÃŲ ÈÄ ¼±·® Ư¼ºÀ» Á¶»çÇÏ¿´´Ù. ±× °á°ú¸¦ Åä´ë·Î
¿­¿ÜÁß¼ºÀÚ(Epithermal
neutron) ¼±·® ÃøÁ¤¹ý¿¡ ´ëÇÑ ÇÁ·ÎÅäÄÝÀ» È®¸³ÇÏ¿© ¿øÀڷο¡¼­ ¹æÃâµÇ´Â ¿­¿Ü Áß¼ºÀÚ ¼±·® Ư¼º Æò°¡ÀÇ ±âÃʸ¦ »ï°í, °¡¼Ó±â¸¦ ÀÌ¿ëÇÑ BNCT ¿¬±¸¿¡ ´ëÇÑ Å¸´ç¼º ¿©ºÎ¸¦ Á¶»çÇÏ°íÀÚ ÇÑ´Ù.
´ë»ó ¹× ¹æ¹ý: °ø±â Áß ¼±·® ¹× ¹°Áú ³» ¼±·® ºÐÆ÷ ÃøÁ¤À» À§ÇØ Unidos 10005(PTW,
Germany) Àü±â°è¿Í Á¶Á÷ µî°¡ ¹°ÁúÀÎ A-150 Çöó½ºÆ½À¸·Î Á¦ÀÛµÈ IC-17 (Far west, USA)
¹× IC-18, EIC-1 ÀÌ¿ÂÇÔÀ» »ç¿ëÇÏ¿´°í, °¨¸¶¼±ÀÇ ÃøÁ¤À» À§Çؼ­´Â ¸¶±×³×½·À¸·Î Á¦ÀÛµÈ
IC-17M ÀÌ¿ÂÇÔÀ» ÀÌ¿ëÇÏ¿´À¸¸ç Á¶Á÷µî°¡ ±âü¿Í ¾Æ¸£°ï ±âü¸¦ ºÐ´ç 5 cc ¾¿ ÁÖÀÔÇϸç Ãø
Á¤ÇÏ¿´´Ù. Áß¼ºÀÚ, ±¤ÀÚ, ÀüÀÚ°¡ È¥ÇÕµÈ ÀåÀÇ ¸ðÀÇ ¼ö¼Û Çؼ®À» À§ÇØ ÀÌ¿ëµÇ´Â Monte Carlo
N-Particle (MCNP) Transport code¸¦ »ç¿ëÇÏ¿© 2Â÷¿øÀû ¼±·® ºÐÆ÷ ¹× ¿¡³ÊÁö ºÐÆ÷¸¦ °è»ê
ÇÏ¿´À¸¸ç ÀÌ °á°ú¸¦ ÃøÁ¤°ª°ú ºñ±³ÇÏ¿´´Ù.
°á°ú: BNCT¿¡¼­ÀÇ À¯È¿ Ä¡·á ±íÀÌÀÎ ¹° ÆÒÅÒ 4 cm¿¡¼­ÀÇ ¼±·®Àº Ä¡·á±â 1 MU ´ç
6.47X10-3 cGy·Î ¹Ì¼¼ÇÏ¿´À¸¸ç, À̶§ °¨¸¶ ¿À¿°µµ(contamination)´Â 65.2¡¾
0.9%·Î Áß¼ºÀÚº¸´Ù´Â °¨¸¶¼±¿¡ ÀÇÇÑ ¼±·® ±â¿©ºÐÀÌ ¿ì¼¼ÇÏ¿´´Ù. ±íÀÌ¿¡ µû¸¥ ¼±·® ºÐÆ÷ Ư
¼º¿¡¼­´Â Áß¼ºÀÚ ¼±·®Àº ¼±ÇüÀûÀ¸·Î °¨¼è µÇ¾ú°í, °¨¸¶¼±·®Àº Áö¼öÀûÀ¸·Î º¸´Ù ±Þ°ÝÈ÷ °¨¼è
µÇ´Â °æÇâÀ» º¸¿´À¸¸ç Àüü ¼±·®ÀÇ D20D10Àº 0.718À̾ú´Ù.
MCNP¿¡ ÀÇÇÑ ¿¡³ÊÁö ºÐÆ÷ Àü»ê °è»êÀÇ °á°ú 2.87 MeVÀÌÇÏ¿¡¼­ Áß¼ºÀÚ ÇÇÅ©°¡ ³ªÅ¸³µÀ¸
¸ç, Àú¿¡³ÊÁö ¿µ¿ª¿¡¼­´Â °¨¸¶¼±ÀÌ ¿¬¼ÓÀûÀ¸·Î ºÐÆ÷µÇ´Â ¾ç»óÀ» º¸¿´´Ù.
°á·Ð: º® ¹°ÁúÀÌ ¼­·Î ´Ù¸¥ µÎ °³ÀÇ ÀÌ¿ÂÇÔÀ» »ç¿ëÇÑ Á÷Á¢ ¼±·® ÃøÁ¤°ú MCNP Àü»ê ½Ã¹Ä·¹
À̼ÇÀ» ÀÌ¿ëÇÑ °ø°£ ¼±·®ºÐÆ÷ °è»êÀ¸·Î ¹Ì¼¼ ¼ÓÁß¼ºÀÚ ºö¿¡ ´ëÇÑ ¼±·® Ư¼ºÀ» ÆľÇÇÒ ¼ö ÀÖ
¾úÀ¸¸ç, ¿øÀÚ·Î ¿­¿ÜÁß¼ºÀÚ ÁÖ(Epithermal neutron column)¿¡ ´ëÇÑ ¼±·® Æò°¡ ÀÚ·á·Î È®º¸
ÇÏ¿´´Ù. ¾Æ¿ï·¯ °¡¼Ó±â¿¡ ´ëÇÑ ¿¬±¸°¡ ÁøÇàµÇ¾î °íÀü¾Ð, °íÀü·ù¸¦ ¹ß»ý½ÃÅ°´Â Àü¿ø °ø±ÞÀåÄ¡
¿Í Ç¥ÀûÇÙ(Targer) ¹°ÁúÀÌ °³¹ßµÇ°í ºñ½º¹«½º³ª ³³ µî¿¡ ÀÇÇØ °¨¸¶ ¿À¿°µµ¸¦ ÁÙÀÏ °æ¿ì, ½Î
ÀÌÅ©·ÎÆ®·Ð¿¡ ÀÇÇÑ º¸·Ð-Áß¼ºÀÚ Æ÷ȹġ·áµµ °¡´ÉÇØÁú °ÍÀ¸·Î ÆǴܵȴÙ.

Purpose: For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics
were
investigated. Using these results, we hope to establish the protocal about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about
accelerator-based BNCT.
Method and Materials: For measuring the absorbed dose and dose distribution of fast
neutron beams, we used Unidos 10005 (PTW, Germary) electrometer and IC-17 (Far
West, USA), IC-18, EIC-1 ion chambers manufactured by A-150 plastic and used
IC-17M ion chamber manufactured by magnesium for gamma dose. There chambers
were flushed with tissue equivalent gas and argon gas and then the flow rate was 5 cc
per minute. Using monte Carlo N-Particle (MCNP) code, transport program in mixed
field with neutron, photon, electron, two dimensional dose and energy fluence distribution
was calculated and there results were compared with measured results.
Results: The absorbed dose of fast neutron beams was 6.47¡¿10-3 cGy per
1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth
for BNCT. The magnitude of gamma contamination intermingled with fast neutron
beams was 65.2¡¾0.9% at the same depth. In the dose distribution according to the
depth of water, the neutron dosed decreased linearly and the gamma dose decreased
exponentially as the depth was deepened. The factor expressed energy level,
D20/D10, of the total dose was 0.718.
Conclusion: Through the direct measurement using the two icon chambers, which is
made different wall materials, and computer calculation of isodose distribution using
MCNP simulation method, we have found the dose characteristics of low fluence fast
neutron beams. If the power supply and the target material, which generate high voltage
and current, will be developed and gamma contamination was reduced by lead or
bismuth, we think, it may be possible to accelerator-based BNCT.

Å°¿öµå

ºØ¼Ò-Áß¼ºÀÚ Æ÷ȹġ·á¹ý; ½ÎÀÌŬ·ÎÆ®·Ð; Monte Carlo N-Particle (MCNP); Boron neutron capture therapy (BNCT); Cyclotron; Monte Carlo N-Particle (MCNP);

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS