Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

³úÁ¾¾ç ȯÀÚÀÇ 3Â÷¿ø ÀÔüÁ¶Çü Ä¡·á¸¦ À§ÇÑ ³ú³» ÁÖ¿ä ºÎÀ§ÀÇ ¸ðµ¨Ä¡·á°èȹÀÇ °³¹ß Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 2002³â 20±Ç 1È£ p.1 ~ 16
¼Ò¼Ó »ó¼¼Á¤º¸
ǥȫ·Ä/Hong Ryull Pyo ÀÌ»óÈÆ/±è±Í¾ð/±Ý±ââ/Àå¼¼°æ/¼­Ã¢¿Á/Sang Hoon Lee/Gwi Eon Kim/Ki Chang Keum/Se Kyung Chang/Chang Ok Suh

Abstract

¸ñÀû: 3Â÷¿ø ÀÔüÁ¶ÇüÄ¡·á°èȹ(3D Ä¡·á°èȹ)ÀÌ Á¡Â÷ ¸¹ÀÌ ¾²ÀÌ°í ÀÖÀ¸³ª À̸¦ ÀÌ¿ëÇÑ Ä¡·á°èȹ ¼ö¸³½Ã°£ÀÌ ¸¹ÀÌ °É·Á¼­ ¸ðµç ȯÀÚ¿¡°Ô ÀÌ ¹æ¹ýÀ» Àû¿ëÇϴµ¥ °É¸²µ¹ÀÌ µÇ°í ÀÖ´Ù. 3D Ä¡·á°èȹÀÇ È¿À²¼ºÀ» ³ôÀ̱â À§Çؼ­ ³úÀÇ °¢ ºÎÀ§ Á¾¾ç¿¡ ´ëÇÑ ¸ðµ¨ 3D
Ä¡·á°èȹÀ» °³¹ßÇÏ°íÀÚ º» ¿¬±¸¸¦ ½ÃÇàÇÏ¿´´Ù. Àç·á ¹× ¹æ¹ý: ÀÓ»ó¿¡¼­ °¡Àå ÈçÈ÷ Á¢ÇÑ´Ù°í »ý°¢µÇ´Â °¡»óÀÇ Á¾¾çÀ» ³úÀÇ °¢ ºÎÀ§º°·Î ÄÄÇ»ÅÍ´ÜÃþÃÔ¿µ(CT) ¿µ»óÀ§¿¡ ±×·È´Ù. °¢ Á¾¾çÀÇ °èȹ¿ëÇ¥ÀûüÀû(PTV)Àº ´ÙÀ½°ú °°´Ù. ÃøµÎ¿± Á¾¾ç : 5.7¡¿8.2¡¿7.6 §¯,
Å;îÅ°¾È»óºÎ Á¾¾ç : 3¡¿4¡¿4.1 §¯, ½Ã»óÀÇ Á¾¾ç : 3.1¡¿5.9¡¿3.7 §¯, ÀüµÎÁ¤¿± Á¾¾ç : 5.5¡¿7¡¿5.5 §¯, ÈĵÎÁ¤¿± Á¾¾ç : 5¡¿5.5¡¿5 §¯. 2D Ä¡·á°èȹÀ¸·Î 2¹® ´ëÇ× Á¶»ç¹ý°ú µÎÁ¤À§Á¶»ç¾ß¸¦ Æ÷ÇÔÇÑ 3¹® Á¶»ç¹ýÀ» ¼öÀÛ¾÷À¸·Î ¼ö¸³ÇÏ¿´°í, 3D Ä¡·á°èȹÀº
ºö¹æÇâ»ó±â¹ý°ú
ÀÚµ¿
3Â÷¿ø Â÷Æó¹°Á¦ÀÛÇÁ·Î±×·¥À» ÀÌ¿ëÇÏ¿© ¼ö¸³ÇÏ¿´´Ù. Ãѹæ»ç¼±·®Àº Å;îÅ°¾È »óºÎÁ¾¾ç¿¡´Â 54 Gy, ´Ù¸¥ Á¾¾ç¿¡´Â 59.4 Gy¿Í ¼±·®Áõ°¡¸¦ ½ÃÇàÇÑ 72 Gy¸¦ ¼³Á¤ÇÏ¿´´Ù. 2D Ä¡·á°èȹÀ» Æ÷ÇÔÇÑ ¸ðµç Ä¡·á°èȹÀÇ ¼±·®ºÐÆ÷°è»êÀº 3D Ä¡·á°èȹ ¼ÒÇÁÆ®¿þ¾î¸¦ ÀÌ¿ëÇÏ¿©
°è»êÇÏ¿´´Ù.
¼ö¸³µÈ 2D¿Í 3D Ä¡·á°èȹµéÀ» ¼±·®Ã¼ÀûÈ÷½ºÅä±×·¥(DVH), Á¤»óÁ¶Á÷¼Õ»óÈ®·ü(NTCP), ±×¸®°í ¿©·¯ ¼±·®Åë°è°ª(ÃÖ¼Ò°ª, ÃÖ´ë°ª, Æò±Õ°ª, D5, V83, V85, V95)À» ÀÌ¿ëÇÏ¿© ºñ±³ÇÏ¿´´Ù. ÃÖÁ¾ÀûÀ¸·Î °¢ ºÎÀ§º°·Î °¡Àå ÀûÀýÇÑ Ä¡·á°èȹÀ» °¢°¢ÀÇ ¸ðµ¨Ä¡·á°èȹÀ¸·Î
¼±Á¤ÇÏ¿´´Ù.
°á°ú: 1) ÃøµÎ¿± Á¾¾ç : ¸ðµç 3D Ä¡·á°èȹµéÀÇ NTCP¿Í DVH°¡ 2D Ä¡·á°èȹµé¿¡ ºñÇÏ¿© ¿ì¼öÇÏ¿´À¸¸ç, ÀÌ °æÇâÀº Ãѹæ»ç¼±·®ÀÌ 72 Gy·Î Áõ°¡ÇÏ¿´À»¶§ ´õ¿í ¶Ñ·ÇÇÏ¿´´Ù(Á¤»ó³úÀÇ NTCP°¡ 2D Ä¡·á°èȹµé¿¡¼­ 27%, 8% ¡æ 3D Ä¡·á°èȹ¿¡¼­ 1%, 1%·Î °¨¼Ò).
¼±·®Åë°è°ªµéÀº
Ä¡·á°èȹ ¼±Á¤¿¡ µµ¿òÀÌ µÉ ¸¸ÇÑ ÀÏÁ¤ÇÑ °æÇâÀ» º¸¿©ÁÖÁö ¸øÇß´Ù. 3°³ÀÇ ºñµ¿ÀÏÆò¸é(non-coplanar) Á¶»ç¾ß¸¦ ÀÌ¿ëÇÑ 3D Ä¡·á°èȹÀÌ ¸ðµ¨Ä¡·á°èȹÀ¸·Î ¼±Á¤µÇ¾ú´Ù. 2) Å;îÅ°¾È »óºÎ Á¾¾ç : Á¾¾ç¿¡ ´ëÇÑ Ãѹæ»ç¼±·®ÀÌ 54 Gy¿´±â ¶§¹®¿¡ ¸ðµç 3D Ä¡·á°èȹ°ú 2D
Ä¡·á°èȹÀÇ
NTCP°¡ Â÷À̸¦ º¸ÀÌÁö ¾Ê¾Ò´Ù. Á¤»ó³ú¿Í ³ú°£ÀÇ DVH´Â °¢ Ä¡·á°èȹ°£¿¡ ÀÏ°ü¼ºÀÖ´Â ¶Ñ·ÇÇÑ Â÷À̸¦ º¸¿´´Ù. D5, V85, V95, ±×¸®°í Á¶»ç¼±·®ÀÇ Æò±Õ°ªÀÌ °¢ Ä¡·á°èȹÀÇ DVHÀÇ °á°ú¿Í ¾î´ÀÁ¤µµ ÀÏÄ¡ÇÏ´Â °æÇâÀ» º¸¿´´Ù. 2D Ä¡·á°èȹ¿¡¼­ µÎÁ¤À§Á¶»ç¾ß¸¦ Æ÷ÇÔÇÑ 3°³ÀÇ
Á¶»ç¾ß¸¦
»ç¿ëÇÑ´Ù ÇÏ¿©µµ 3D Ä¡·á°èȹÀÌ ¸ðµç °æ¿ì¿¡¼­ À̺¸´Ù ¿ì¼öÇÏ¿´´Ù. 7°³ÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ 3D Ä¡·á°èȹÀº ´õ ÀûÀº °³¼öÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ Ä¡·á°èȹº¸´Ù ÁÁÁö ¸øÇÏ¿´´Ù. 5°³ÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ 3D Ä¡·á°èȹÀÌ ¸ðµ¨Ä¡·á°èȹÀ¸·Î ¼±Á¤µÇ¾ú´Ù. 3) ½Ã»óÀÇ Á¾¾ç :
Ãѹæ»ç¼±·®À»
72 Gy·Î Áõ°¡½ÃÄ×À» °æ¿ì¿¡ ¸ðµç 3D Ä¡·á°èȹÀÇ NTCP°ªÀÌ 2D Ä¡·á °èȹ¿¡ ºñÇÏ¿© ¿ì¼öÇÏ¿´´Ù. Á¤»óÁ¶Á÷µéÀÇ DVHµµ ºñ½ÁÇÑ °á°ú¸¦ º¸¿´´Ù. V83, V85, V95°ªµéÀÌ Á¤»óÁ¶Á÷µé¿¡ ´ëÇÑ Ä¡·á°èȹ°£ Á¶»ç¼±·®ÀÇ Â÷À̸¦ ¹Ý¿µÇÏ´Â ¸ð½ÀÀ» º¸¿´À¸³ª DVH¿¡¼­ º¸ÀÌ´Â Á¤µµÀÇ
ÀÏ°üµÈ
Â÷À̸¦ º¸ÀÌÁö ¸øÇß´Ù. 5°³ÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ 3D Ä¡·á°èȹÀÌ ¸ðµ¨ °èȹÀ¸·Î ¼±Á¤µÇ¾ú´Ù. 4) ÀüµÎÁ¤¿± ȤÀº ÈĵÎÁ¤¿± Á¾¾ç : ¸ðµç °æ¿ì¿¡¼­ 2D Ä¡·á°èȹ¿¡ ºñÇÏ¿© 3D Ä¡·á°èȹ¿¡¼­ NTCP°ªÀÌ ´õ ³·¾Ò´Ù. DVHµµ °°Àº °æÇâÀ» º¸¿´´Ù. V83, V85, V95µµ NTCP¿Í DVHÀÇ
°æÇâ¿¡
ÀÏÄ¡ÇÏ´Â ÀÏ°üµÈ °æÇâÀ» ³ªÅ¸³Â´Ù. ÀüµÎÁ¤¿± Á¾¾ç¿¡¼­´Â 5°³ÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ 3D Ä¡·á°èȹÀÌ, ÈĵÎÁ¤¿± Á¾¾ç¿¡¼­´Â 6°³ÀÇ Á¶»ç¾ß¸¦ »ç¿ëÇÑ 3D Ä¡·á°èȹÀÌ ¸ðµ¨Ä¡·á°èȹÀ¸·Î ¼±Á¤µÇ¾ú´Ù. °á·Ð: NTCP¿Í DVH°¡ Ä¡·á°èȹ°£ÀÇ Â÷À̸¦ ºñ±³Àû ÇÕ¸®ÀûÀ¸·Î
¹Ý¿µÇÑ´Ù°í
ÆǴܵǾúÀ¸¸ç, °¢°¢ÀÇ Ä¡·á°èȹÀ» ºñ±³Çϴµ¥ À¯¿ëÇÑ °ÍÀ¸·Î »ý°¢µÈ´Ù. ¸ðµç 3D Ä¡·á°èȹÀÌ 2D Ä¡·á°èȹ¿¡ ºñÇÏ¿© ¿ì¼öÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ³úÀÇ °¢ ºÎÀ§º° Á¾¾ç¿¡ ´ëÇÏ¿© Ä¡·á°èȹ°£ NTCP, DVH, ±×¸®°í ¸¶Áö¸·À¸·Î ¼³°èÀÚÀÇ ÆÇ´Ü¿¡ ÀÇÇÏ¿© °¡Àå ÀûÀýÇÑ
Ä¡·á°èȹµéÀ»
¸ðµ¨Ä¡·á°èȹÀ¸·Î ¼±Á¤ÇÏ¿´´Ù.

Purpose: Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this
technique
to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plans for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site
of
brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decided. Materials and Methods: Imaginary tumors, with sizes commonly observed in the clinic, were
designed
for
each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal tumor-5.7¡¿8.2¡¿7.6 §¯, suprasellar tumor-3¡¿4¡¿4.1 §¯, thalamic tumor-3.1¡¿5.9¡¿3.7 §¯, frontoparietal tumor-5.5¡¿7¡¿5.5 §¯, and
occipitoparietal tumor-5¡¿5.5¡¿5 §¯. Plans using parallel opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed
using
beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were
compared
with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain
was
selected. Results: 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D plans : 27%, 8% ¡æ 3D
plans
:
1%, 1%). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant
difference
because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were
superior
to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic
tumor;
NTCPs
of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5
noncoplanar
portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH.
3D
plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion: NTCP and DVH showed reasonable differences between plans and were thought to be useful for comparing plans.
All
3D
plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Å°¿öµå

3Â÷¿øÀÔüÁ¶ÇüÄ¡·á; ³úÁ¾¾ç; Á¤»óÁ¶Á÷¼Õ»óÈ®·ü; ¼±·®Ã¼ÀûÈ÷½ºÅä±×·¥; ¸ðµ¨Ä¡·á°èȹ; 3 dimensional conformal radiotherapy; brain tumor; Normal Tissue Complication Probability; Dose Volume Histogram; model radiotherapy plan;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS