Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Basic Fibroblast Growth Factor (bFGF)ÀÇ ¹æ»ç¼±º¸È£ÀÛ¿ë¿¡ ´ëÇÑ ½ÇÇèÀû ¿¬±¸ In vivo Radioprotective Effects of Basic Fibroblast Growth Factor in C3H Mice

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 2002³â 20±Ç 3È£ p.253 ~ 263
±è¿¬½Ç, À±¼¼Ã¶,
¼Ò¼Ó »ó¼¼Á¤º¸
±è¿¬½Ç (  ) 
¿ï»ê´ë ¼­¿ïÁß¾Óº´¿ø

À±¼¼Ã¶ (  ) 
¿ï»ê´ë ¼­¿ïÁß¾Óº´¿ø

Abstract

¸ñÀû: bFGF (basic fibroblast growth factor)´Â ¼¶À¯¾Æ¼¼Æ÷(fibroblast)¿¡¼­ ºÐºñÇÏ´Â ´ëÇ¥ÀûÀÎ ¼ºÀåÀÎÀÚ·Î ¼¶À¯¾Æ¼¼Æ÷ »Ó ¾Æ´Ï¶ó °£ÁúÁ¶Á÷°ú °ñ¼ö ¹× ´Ù¸¥ »óÇÇ ±Ù¿ø¼¼Æ÷ÀÇ ¼ºÀå¿¡µµ °ü¿©ÇÏ¸ç ¹æ»ç¼±º¸È£Á¦ ¿ªÇÒ¿¡ °üÇÑ ¿¬±¸°¡ ½ÃµµµÇ°í ÀÖ´Ù. ÀÌ ¿¬±¸´Â
¹æ»ç¼±º¸È£Á¦·Î¼­ÀÇ bFGFÀÇ ±â´ÉÀ» ¾Ë¾Æº¸°íÀÚ ÇÏ¿´´Ù.

´ë»ó ¹× ¹æ¹ý: °£¿±Á¶Á÷ ±â¿ø(mesenchymal origin)ÀÎ ¸¶¿ì½ºÀ°Á¾ 180 Á¾¾ç¼¼Æ÷¸¦ »ýÁã ´ëÅðºÎ ÇÇÇÏ¿¡ À̽ÄÇÏ°í bFGF¸¦ Åõ¿©ÇÑ ÈÄ Àü½Å¹æ»ç¼±Á¶»ç(6, 8, 10 §í)ÇÏ¿© »ýÁãÀÇ »ýÁ¸·üÀ» Á¶»çÇÏ°í bFGF (3, 6 §¶/Áã)ÀÇ ¹æ»ç¼±º¸È£È¿°ú¸¦ °üÂûÇÏ¿´´Ù. µ¿½Ã¿¡
À̽ÄÇÑ
¸¶¿ì½º 180 °íÇüÁ¾¾çÀ» ±¹¼Ò¹æ»ç¼±Á¶»çÇÑ ÈÄ bFGF°¡ Á¾¾ç¼ºÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¾Ë¾Æº¸¾Ò´Ù. ¶ÇÇÑ bFGF¿¡ ÀÇÇÑ ¹æ»ç¼±º¸È£È¿°úÀÇ ±âÀüÀ» ÀÌÇØ ÇÏ°íÀÚ ¼ÒÀåÁ¡¸·, °ñ¼ö, ÆóÁ¶Á÷ ¹× À̽ÄÁ¾¾çÁ¶Á÷¿¡ ´ëÇÑ º´¸® Á¶Á÷ÇÐÀû °Ë»ç¿Í DNA terminal transferase nick-end
labeling
assay ¹æ¹ýÀ¸·Î ¾ÆÆ÷ÇÁÅä½Ã½º(apoptosis) ºóµµ¸¦ ÃøÁ¤ÇÏ¿´´Ù.

°á°ú: 1) ¹æ»ç¼±Á¶»ç´Üµ¶±º¿¡ ºñÇØ ¹æ»ç¼±Á¶»ç¿Í 6 §¶ bFGF Åõ¿©º´Ç౺¿¡¼­ »ýÁãÀÇ °ñ¼öÄ¡»ç¸¦ °¨¼Ò½ÃÄÑ »ýÁ¸·üÀÌ Áõ°¡µÇ¾ú´Ù(p<0.05). 2) ¹æ»ç¼±Á¶»ç´Üµ¶±º¿¡ ºñÇØ ¹æ»ç¼±Á¶»ç¿Í 6 §¶ bFGF Åõ¿©º´Ç౺¿¡¼­ °øÀå ¼Ò³¶¼± ±íÀÌ ¹× ¹Ì¼¼À¶¸ð ±æÀÌ°¡ ÀÇÀÇ ÀÖ°Ô
Áõ°¡µÇ¾ú´Ù(p<0.05). ¼Ò³¶¼±¼¼Æ÷ÀÇ ¾ÆÆ÷ÇÁÅä½Ã½º ºóµµ´Â ¹æ»ç¼±Á¶»ç´Üµ¶±º¿¡ ºñÇØ ¹æ»ç¼±Á¶»ç¿Í bFGF Åõ¿©º´Ç౺¿¡¼­ ¹æ»ç¼±Á¶»çÈÄ 8½Ã°£, 24½Ã°£¿¡ °¨¼ÒÇÏ¿´À¸¸ç bFGF¸¦ °í¿ë·® Åõ¿©ÇÑ ±º¿¡¼­ ¶Ñ·ÇÇÏ¿´´Ù. 3) °ñ¼öÁ¶Á÷¿¡¼­´Â ¹æ»ç¼±Á¶»ç ÈÄ 7ÀÏ, 14ÀÏ° ¼¼Æ÷
¹Ðµµ°¡
¹æ»ç¼±Á¶»ç´Üµ¶±º¿¡ ºñÇØ ¹æ»ç¼±Á¶»ç¿Í 6 §¶ bFGF Åõ¿©º´Ç౺¿¡¼­ Áõ°¡ÇÏ¿´À¸¸ç ƯÈ÷ °ÅÇÙ±¸(megakaryocyte) °è¿­ÀÇ Áõ°¡°¡ ¶Ñ·ÇÇÏ¿´´Ù. 4) ÆóÁ¶Á÷ÀÇ H-E ¿°»ö Á¶Á÷¼Ò°ß¿¡¼­ ¹æ»ç¼±´Üµ¶±º°ú ¹æ»ç¼±Á¶»ç¿Í bFGF Åõ¿©º´Ç౺ °£ÀÇ Â÷ÀÌ´Â ¾ø¾ú´Ù. 5) °ñ¼ö ¹× Æó
Á¶Á÷¿¡¼­
bFGF
Åõ¿©¿¡ µû¸¥ Ãʱ⠾ÆÆ÷ÇÁÅä½Ã½º ºóµµÀÇ Â÷ÀÌ´Â ¾ø¾ú´Ù(p>0.05). 6) ¾ç¼º´ëÁ¶±º°ú bFGF´Üµ¶Åõ¿©±º ºñ±³½Ã bFGFÅõ¿©¿¡ ÀÇÇÑ Á¾¾ç¼ºÀåÀº °üÂûµÇÁö ¾Ê¾ÒÀ¸¸ç(p>0.05) ¹æ»ç¼±Á¶»ç´Üµ¶±º°ú ¹æ»ç¼±Á¶»ç¿Í 6 ¥ìg bFGF Åõ¿©º´Ç౺¿¡¼­µµ Á¾¾ç¼ºÀå°î¼±ÀÇ Â÷ÀÌ´Â
¾ø¾ú´Ù(p>0.05).

°á·Ð: ÀÌ»óÀÇ °á°ú·Î bFGF´Â ¼ÒÀåÁ¡¸· ¹× °ñ¼ö¼¼Æ÷¿¡ ¹æ»ç¼±º¸È£È¿°ú°¡ ÀÖ¾úÀ¸¸ç ±× ±âÀüÀº Á¶Ç÷¸ð¼¼Æ÷ ¹× ¼ÒÀ島¼±¼¼Æ÷ÀÇ ¼ºÀå ¹× Àç»ýÀ» ÃËÁøÇÏ°í Á¶±â¿¡ ¹æ»ç¼±À¸·Î À¯µµµÈ ¾ÆÆ÷ÇÁÅä½Ã½º¸¦ °¨¼Ò½ÃÅ°±â ¶§¹®ÀÎ °ÍÀ¸·Î »ý°¢µÈ´Ù.

Purpose: In order to understand in vivo radiation damage modifying effect of bFGF on jejunal mucosa, bone marrow and the effect of bFGF on the growth of transplanted mouse sarcoma 180 tumor in mice.

Materials and Methods: Mice were treated with 6 §¶ of bFGF at 24 hours and 4 hours before exposing to 600 c§í, 800 c§í and 1,000 c§í total body irradiation (TBI), and then exposed to 3,000 c§í local radiation therapy on the tumor bearing
thigh.
Survival and tumor growth curve were plotted in radiation alone group and combined group of bFGF and irradiation (RT). Histologic examination was performed in another experimental group. Experimental groups consisted of normal control, tumor
control, RT
(radiation therapy) alone, 6 §¶ bFGF alone, combined group of 3 §¶ bFGF and irradiation (RT), combined group of 6 ¥ìg bFGF and irradiation (RT). Histologic examination was performed with H-E staining in marrow, jejunal mucosa, lung and sarcoma
180
bearing tumor. Radiation induced apoptosis was determined in each group with the DNA terminal transferase nick-end labeling method (ApopTag® S7100-kit, Intergen Co.)

Results: The results were as follows 1) 6 §¶ bFGF given before TBI significantly improved the survival of lethally irradiated mice. bFGF would protect against lethal bone marrow syndrome. 2) 6 §¶ bFGF treated group showed a significant
higher
crypt depth and microvilli length than RT alone group (p<0.05). 3) The bone marrow of bFGF treated group showed less hypocellularity than radiation alone group on day 7 and 14 after TBI (p<0.05), and this protective effect was more evident in 6
§¶
bFGF
treated group than that of 3 §¶ bFGF treated group. 4) bFGF protected against early radiation induced apoptosis in intestinal crypt cell but might have had no antiapoptotic effect in bone marrow stem cell and pulmonary endothelial cells. 5) There
was no
significant differences in tumor growth rate between tumor control and bFGF alone groups (p>0.05). 6) There were no significant differences in histopathologic findings of lung and mouse sarcoma 180 tumor between radiation alone group and bFGF
treated
group.

Conclusions: Our results suggest that bFGF protects small bowel and bone marrow from acute radiation damage without promoting the inoculated tumor growth in C3H mice. Improved recovery of early responding normal tissue and reduced number
of
radiation induced apoptosis may be possible mechanism of radioprotective effect of bFGF.

Å°¿öµå

bFGF; ¹æ»ç¼±º¸È£È¿°ú; ¾ÆÆ÷ÇÁÅä½Ã½º; bFGF (basic fibroblast growth factor); Radioprotective effect; Apoptosis;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS