Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

3Â÷¿ø ÀÔüÁ¶ÇüÄ¡·á¿¡ ÀÇÇÑ ¾Æ±³¸ð¼¼Æ÷Á¾ÀÇ ¹æ»ç¼± ¼±·®Áõ°¡ ¿¬±¸ Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 2004³â 22±Ç 4È£ p.237 ~ 246
¼Ò¼Ó »ó¼¼Á¤º¸
Á¶ÀçÈ£/Cho JH ÀÌâ°É/±è°æÁÖ/¹ÚÁøÈ£/À̼¼º´/Á¶»ïÁÖ/½É¼öÁ¤/À±´öÇö/ÀåÁ¾Èñ/±èÅ°ï/±èµ¿¼®/¼­Ã¢¿Á

Abstract

¸ñ Àû: ¾Æ±³¸ð¼¼Æ÷Á¾ÀÇ ¹æ»ç¼±Ä¡·á¿¡¼­ ±¹¼ÒÁ¦¾îÀ²°ú »ýÁ¸À²À» Çâ»ó½ÃÄÑ º¸°íÀÚ 3Â÷¿ø ÀÔüÁ¶ÇüÄ¡·á±â¹ýÀ» ÀÌ¿ëÇÑ ¹æ»ç¼±¼±·® Áõ°¡ ¿¬±¸¸¦ ÀüÇâÀûÀ¸·Î ½ÃÇàÇÏ¿´´Ù.

´ë»ó ¹× ¹æ¹ý: 1997³â 1¿ùºÎÅÍ 2002³â 7¿ù±îÁö ¾Æ±³¸ð¼¼Æ÷Á¾À¸·Î Á¶Á÷ÇÐÀû Áø´ÜÀÌ µÇ°í Àü½Å¼öÇ൵(KPS)°¡ 60 ÀÌ»óÀ¸·Î ¼ö¼ú ÈÄ ¹æ»ç¼±Ä¡·á¸¦ ¹ÞÀº ȯÀÚ¸¦ ´ë»óÀ¸·Î ÇÏ¿´´Ù. ÇÁ·ÎÅäÄÝ¿¡ µû¶ó ÀüÇâÀûÀ¸·Î ¿¬±¸¿¡ Âü¿©ÇÑ 42¿¹ÀÇ °í¼±·®±º°ú ÈÄÇâÀû ´ëÁ¶±ºÀÎ 33¿¹ÀÇ Àú¼±·®±ºÀ» ºñ±³ ºÐ¼®ÇÏ¿´´Ù. °í¼±·®±ºÀº 3Â÷¿ø ÀÔüÁ¶ÇüÄ¡·á¹ý¿¡ ÀÇÇØ 63.0¢¦70.2 Gy (Áß¾Ó°ª 66 Gy)ÀÇ °í¼±·® ¹æ»ç¼±À» Á¶»ç¹Þ¾ÒÀ¸¸ç, Àú¼±·®±ºÀº 2Â÷¿ø Ä¡·á¹æ½ÄÀ¸·Î ÇöÀç Ç¥Áؼ±·®À¸·Î ¿©°ÜÁö°í ÀÖ´Â 59.4 Gy Á¤µµ(ÃÖ¼Ò¼±·® 50.4 Gy, Áß¾Ó¼±·® 59.4 Gy)ÀÇ °èȹµÈ ¹æ»ç¼±Ä¡·á¸¦ Á¾·áÇÒ ¼ö ÀÖ¾ú´ø ȯÀÚµéÀ» ´ë»óÀ¸·Î ÇÏ¿´´Ù. ¼ö¼úÀýÁ¦¹üÀ§¿¡ µû¶ó ³ª´©¾îº¸¸é ÀüÀýÁ¦¼ú 30¿¹(40%), ÁØÀüÀýÁ¦¼ú 30¿¹(40%), ºÎºÐÀýÁ¦¼ú 8¿¹(11%), ±×¸®°í Á¶Á÷»ý°Ë¸¸ ½ÃÇàµÈ ȯÀÚ°¡ 7¿¹(9%)¿´´Ù. °¢ ȯÀÚÀÇ À°¾ÈÁ¾¾çüÀûÀº CT ȤÀº MRI»ó ¼ö¼úÀýÁ¦¿¬ ¹× ÀÜ·ùÁ¾¾ç¿¡ ÀÇÇØ Á¤ÀǵǾú´Ù. Á¾¾çÁÖº¯ ºÎÁ¾Àº Àú¼±·®±º¿¡¼­´Â ÀÓ»óÇ¥ÀûüÀû¿¡ Æ÷ÇԵǾúÁö¸¸, °í¼±·®±º¿¡¼­´Â Àç¹ß¾ç»ó ¹× ¼±·®Áõ°¡¿¡ µû¸¥ ÇÕº´Áõ Áõ°¡ÀÇ °¡´É¼ºÀ» °í·ÁÇÏ¿© Á¦¿ÜÇÏ¿´´Ù. ȯÀÚÀÇ Àüü ¹× ¹«ÁøÇà»ýÁ¸±â°£Àº ¼ö¼ú ¹ÞÀº ³¯À» ±âÁØÀ¸·Î Kaplan-Meier¹ýÀ¸·Î »êÃâÇÏ¿´°í, ±âÁ¸ ¹®Çå¿¡ º¸°íµÇ°í ÀÖ´Â ¿¹ÈÄÀÎÀÚµé°ú °¢ ȯÀÚ¿¡ Á¶»çµÈ ¹æ»ç¼± ¼±·®, Ç¥ÀûüÀû µîÀÌ »ýÁ¸À²¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Log rank test ¹× Cox regression analysis·Î ºÐ¼®ÇÏ¿´´Ù. ÃßÀû°üÂûÀ» À§ÇØ Á¤±âÀûÀ¸·Î MRI°¡ ½ÃÇàµÇ¾ú´Ù.

°á °ú: ÀüüȯÀÚÀÇ Áß¾Ó »ýÁ¸±â°£ ¹× ¹«ÁøÇà »ýÁ¸±â°£Àº °¢°¢ 15¡¾1.65, 11¡¾0.95°³¿ùÀ̾ú´Ù. Áß¾Ó»ýÁ¸±â°£Àº Àú¼±·®±º ¹× °í¼±·®±ºÀÌ °¢°¢ 14¡¾0.94°³¿ù, 21¡¾5.03°³¿ù·Î °í¼±·®±º¿¡¼­ º¸´Ù ³ªÀº Ä¡·á¼ºÀûÀ» º¸¿©ÁÖ¾úÀ¸¸ç, Áß¾Ó ¹«ÁøÇà»ýÁ¸±â°£Àº Àú¼±·®±º 10¡¾1.63°³¿ù, °í¼±·®±º 12¡¾1.59°³¿ùÀ̾ú´Ù. ƯÈ÷ 2³â »ýÁ¸À²¿¡ À־ °í¼±·®±ºÀº 44.7%·Î 19.2%ÀÎ Àú¼±·®±º¿¡ ºñÇØ ÈξÀ ÁÁÀº ¿¹Èĸ¦ º¸¿´´Ù. ´Üº¯·®ºÐ¼®¿¡¼­ ¿¹ÈÄ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÀÎÀڷδ ȯÀÚÀÇ ³ªÀÌ, Àü½Å¼öÇ൵, Á¾¾çÀÇ À§Ä¡, ¼ö¼úÀýÁ¦¹üÀ§, Ç¥ÀûüÀû, ¹æ»ç¼±ÃѼ±·® µîÀ̾ú´Ù. ´Ùº¯·®ºÐ¼®¿¡¼­ Åë°èÀûÀ¸·Î À¯ÀÇÇÑ ÀÎÀڴ ȯÀÚÀÇ ³ªÀÌ(p=0.012), ¼ö¼úÀýÁ¦¹üÀ§(p=0.000), ¹æ»ç¼±¼±·®±º(p=0.049)À̾ú´Ù. ¹æ»ç¼±±«»ç¿Í °°Àº ¹æ»ç¼±À¸·Î ÀÎÇÑ Á÷Á¢ÀûÀÎ ¸¸¼ºÇÕº´ÁõÀº ÃßÀû°üÂû±â°£ µ¿¾È ¹ß»ýÇÏÁö ¾Ê¾Ò´Ù.

°á ·Ð: 3Â÷¿ø ÀÔüÁ¶ÇüÄ¡·á±â¹ýÀ» ÅëÇÏ¿© 70 Gy±îÁöÀÇ ¹æ»ç¼±À» ºÎÀÛ¿ë ¾øÀÌ Á¶»çÇÒ ¼ö ÀÖ¾ú°í, ±ÙÄ¡Àû ±¹¼Ò¿ä¹ýÀÇ ÀÏȯÀ¸·Î ¹æ»ç¼± ¼±·®Áõ°¡°¡ Àüü »ýÁ¸±â°£ ¹× ¹«ÁøÇà »ýÁ¸±â°£À» Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÑ´Ù.

Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT).

Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received 63¢¦70 Gy (Median 66 Gy, fraction size 1.8¢¦2 Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores.

Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were 15¡¾1.65 and 11¡¾0.95 months, respectively. There was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were 21¡¾5.03 and 12¡¾1.59 months, respectively, while for Arm 2 patients they were 14¡¾0.94 and 10¡¾1.63 months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; 44.7% versus 19.2%. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified.

Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.

Å°¿öµå

¾Æ±³¸ð¼¼Æ÷Á¾;¹æ»ç¼±Ä¡·á;¼±·®Áõ°¡;Ç¥ÀûüÀû;Glioblastoma;3D-CRT;Dose escalation;Target volume

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS