Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¹æ»ç¼±¼ö¼ú¿¡¼­ Á¾¾ç ¿òÁ÷ÀÓÀ» ÀçÇö½ÃŲ ¿òÁ÷ÀÌ´Â ÆÒÅÒÀ» ÀÌ¿ëÇÏ¿© ¼±·® ºÐÆ÷ÀÇ ¿Ö°î¿¡ ´ëÇÑ ¿¬±¸ Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery

´ëÇѹæ»ç¼±Á¾¾çÇÐȸÁö 2007³â 25±Ç 4È£ p.268 ~ 277
±è¹Ì¼÷, À̵¿ÇÑ, Á¶Ã¶±¸, ·ù¼º·Ä, À¯ÇüÁØ, ¼­¿µ¼®, ¿¹¼ºÁØ, ÇϼºÈ¯, ±èÀÏÇÑ, ¹ÚÂùÀÏ, ¾ç±¤¸ð, Áö¿µÈÆ, ±è±Ý¹è, ¹ÚÀçÈ«,
¼Ò¼Ó »ó¼¼Á¤º¸
±è¹Ì¼÷ ( Kim Mi-Sook ) 
¿øÀڷº´¿ø ¹æ»ç¼±Á¾¾çÇаú

À̵¿ÇÑ ( Lee Dong-Han ) 
¿øÀÚ·ÂÀÇÇпø »çÀ̹ö³ªÀÌÇÁ¼¾ÅÍ
Á¶Ã¶±¸ ( Cho Chul-Koo ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±Á¾¾çÇаú
·ù¼º·Ä ( Yoo Seong-Yul ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±Á¾¾çÇаú
À¯ÇüÁØ ( Yoo Hyung-Jun ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±Á¾¾çÇаú
¼­¿µ¼® ( Seo Young-Seok ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±Á¾¾çÇаú
¿¹¼ºÁØ ( Ye Sung-Joon ) 
¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ ¹æ»ç¼±Á¾¾çÇб³½Ç
ÇϼºÈ¯ ( Ha Sung-Whan ) 
¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ ¹æ»ç¼±Á¾¾çÇб³½Ç
±èÀÏÇÑ ( Kim Il-Han ) 
¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ ¹æ»ç¼±Á¾¾çÇб³½Ç
¹ÚÂùÀÏ ( Park Chan-Il ) 
¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ ¹æ»ç¼±Á¾¾çÇб³½Ç
¾ç±¤¸ð ( Yang Gwang-Mo ) 
¿øÀڷº´¿ø ¹æ»ç¼±Á¾¾çÇаú
Áö¿µÈÆ ( Ji Young-Hoon ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±ÀÇÇבּ¸¼¾ÅÍ
±è±Ý¹è ( Kim Kum-Bae ) 
¿øÀÚ·ÂÀÇÇпø ¹æ»ç¼±ÀÇÇבּ¸¼¾ÅÍ
¹ÚÀçÈ« ( Park Jae-Hong ) 
¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ ¹æ»ç¼±Á¾¾çÇб³½Ç

Abstract

¸ñ Àû: È£Èí¿¡ ÀÇÇÑ Á¾¾çÀÇ ¿òÁ÷ÀÓÀº »çÀ̹ö³ªÀÌÇÁ¸¦ ÀÌ¿ëÇÑ Á¤À§Àû ¹æ»ç¼±¼ö¼ú°ú °°Àº Á¤È®ÇÑ Ä¡·á¿¡ ÀÖ¾î °í·ÁÇÒ ¸¸ÇÑ ¹æÇØ ¿äÀÎÀÌ´Ù. ÀÌ ¿¬±¸¿¡¼­´Â »çÀ̹ö³ªÀÌÇÁ¸¦ ÀÌ¿ëÇÑ ¹æ»ç¼± ¼ö¼úÀÇ interplay Çö»óÀ» º¸°íÀÚ ÆÒÅÒÀ» ¿òÁ÷ÀÌ°Ô ÇÏ°í ¶ÇÇÑ ¿òÁ÷ÀÌÁö ¾Ê°Ô ÇÏ¿© ¼±·® ºÐÆ÷ÀÇ ¿Ö°îÀ» Á¶»çÇÏ¿´´Ù.

´ë»ó ¹× ¹æ¹ý: ÆÒÅÒÀº 2.5¡¿2.5¡¿5.0ÀÎÄ¡ÀÇ 4°³ÀÇ Á÷À°¸éü·Î ±¸¼ºµÈ Æú¸®¿¡Æ¿·»°ú 2ÀåÀÇ Gafchromic Çʸ§À¸·Î ±¸¼º µÇ¾ú´Ù. Ä¡·á °èȹÀº 20, 30, 40, 50 mm Áö¸§À» °¡Áø ±¸¸¦ °¡»óÇÏ¿© »çÀ̹ö³ªÀÌÇÁ Ä¡·á±â¸¦ ÀÌ¿ëÇÏ¿© 104°³ÀÇ ºö ¹æÇâ°ú single center modeÀÇ Ä¡·á °èȹ ÇÏ¿¡ ÃÑ 30 Gy¸¦ Á¶»çÇÏ¿´´Ù. Ưº°È÷ Á¦ÀÛµÈ ·Îº¿Àº ÆÒÅÒÀ» Á¿ì, ÀüÈÄ, µÎ¹ÌÂÊÀ¸·Î °¢°¢ 5, 10, 20 mm ¿òÁ÷À̵µ·Ï °í¾ÈµÇ¾ú´Ù. Çʸ§ÀÇ optical densityÀ» ÀÌ¿ëÇÏ¿© Á¤ÀûÀÎ »óÅÂÀÇ ÆÒÅÒ°ú ·Îº¿¿¡ ÀÇÇØ ¿òÁ÷ÀÏ ¶§ÀÇ ÆÒÅÒÀÇ ¼±·® ºÐÆ÷¸¦ ±¸ÇÏ¿´´Ù.

°á °ú: Á¤ÀûÀÎ »óÅ¿¡¼­ Á¾¾çÀ» ¸ðµÎ Æ÷ÇÔÇÒ ¼ö ÀÖ´Â ÃÖ¼ÒÀÇ µî¼±·®Àº 20 mm Á¾¾çÀÇ °æ¿ì 80%, 30 mm¿¡ 84%, 40mm¿¡ 83%À̸ç 50 mm Á¾¾ç¿¡ 80%¿´´Ù. Á¤ÀûÀÎ »óÅÂ¿Í ¿òÁ÷ÀÏ ¶§ÀÇ ÆÒÅÒ »çÀÌ¿¡¼­ ¹ß»ýÇÑ ¼±·® ºÐÆ÷ÀÇ Â÷ÀÌ(gap)´Â 20 mm Á¾¾ç¿¡¼­ µÎ¹Ì¹æÇâÀ¸·Î °¢°¢ 3.2, 3.3 cmÀÌ¸ç ¿À¸¥ÂÊ 3.5 mm, ¿ÞÂÊ 1.1 mm¿´´Ù. 30 mm Á¾¾çÀÇ °æ¿ì´Â °¢°¢ 3.9, 4.2, 2.8°ú 0 mm¿´°í 40 mm Á¾¾çÀº °¢°¢ 4.0, 4.8, 1.1, 0 mm¿´´Ù. 50 mm Á¾¾çÀÇ °æ¿ì °¢°¢ 3.9, 3.9, 0.0mm¿´´Ù.

°á ·Ð: 20 mmÀÇ ÀûÀº Á¾¾çÀ» Ä¡·áÇÒ ¶§ 80%ÀÇ µî¼±·®ÀÌ °èȹµÇ´õ¶óµµ ¿òÁ÷ÀÌ´Â ½ÇÁ¦ Ä¡·á¿¡ ÀÖ¾î Á¾¾ç ¿òÁ÷ÀÓÀ» º¸¿ÏÇϱâ À§ÇÏ¿© 60% µî¼±·®À¸·Î ó¹æÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. À̶§ µÎ µî¼±·® °î¼±ÀÇ Â÷ÀÌ´Â 5 mm Á¤µµÀÌ´Ù. ¶ÇÇÑ 30, 40 °ú 50 mmÀÇ Á¾¾ç¿¡¼­´Â ¿òÁ÷ÀÓÀ» º¸¿ÏÇϱâ À§ÇÏ¿© µî¼±·® °î¼±À» 70% Á¤µµ·Î ó¹æÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. À̶§ÀÇ Â÷À̵µ ¾à5 mm ¹Ì¸¸ÀÌ´Ù. ÀÌ´Â »çÀ̹ö³ªÀÌÇÁ¸¦ ÀÌ¿ëÇÑ ¹æ»ç¼±¼ö¼ú ½Ã ¿òÁ÷ÀÓ ±× Â÷ü º¸´Ù ¿©À¯ÆøÀ» Àû°Ô ÁÙ ¼ö ÀÖ´Ù´Â ÀǹÌÀ̸ç ÀÌ´Â ÀÏ¹Ý ¹æ»ç¼±Ä¡·á¿Í ´Ù¸¥ Á¡À̶ó ÇÒ ¼ö ÀÖ´Ù

Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving
phantom and a static phantom.

Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced
three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured.

Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the 30¡­50 mm diameter tumors
and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively.

Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose
curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.

Å°¿öµå

ÆÒÅÒ;Á¾¾ç ¿òÁ÷ÀÓ;µî¼±·® °î¼±;¹æ»ç¼±¼ö¼ú
Moving phantom;Isodose;Radiosurgery;CyberKnife

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed
KAMS